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Abstract. We propose techniques that support the efficient computa-
tion of multidimensional similarity joins in an RDF/SPARQL setting,
where similarity in an RDF graph is measured with respect to a set of
attributes selected in the SPARQL query. While similarity joins have
been studied in other contexts, RDF graphs present unique challenges.
We discuss how a similarity join operator can be included in the SPARQL
language, and investigate ways in which it can be implemented and opti-
mised. We devise experiments to compare three similarity join algorithms
over two datasets. Our results reveal that our techniques outperform DB-
SimJoin: a PostgreSQL extension that supports similarity joins.

Keywords: Similarity Joins, SPARQL

1 Introduction

RDF datasets are often made accessible on the Web through a SPARQL endpoint
where users typically write queries requesting exact matches on the content. For
instance, in Wikidata [27], a SPARQL query may request the names of Nobel
laureates that have fought in a war. However, there are times when users need
answers to a similarity query, such as requesting the Latin American country
with the most similar population and GDP to a European country. The potential
applications for efficient similarity queries in SPARQL are numerous, includ-
ing: entity comparison and linking [23,24], multimedia retrieval [9,15], similarity
graph management [10,7], pattern recognition [4], query relaxation [12], as well
as domain-specific use-cases, such as protein similarity queries [2].

An important feature for similarity queries are similarity joins X ons Y ,
which obtain all pairs (x, y) from the (natural) join X on Y such that x ∈ X,
y ∈ Y , and additionally, x is similar to y according to similarity criteria s.
Similarities are often measured in terms of distance functions between pairs of
objects in a d-dimensional vector space, with two objects being more similar the
closer they are in that space. A distance function δ : Rd × Rd → R is called
a metric when it is non-negative, reflexive, symmetric and satisfies the triangle
inequality. There are two main types of similarity criteria s considered in practice:
a) in a range-based similarity join, s specifies a range r such that the distance
between output pairs must be below r; and b), in a k-nearest neighbours (k-nn)



similarity join, s specifies an integer k such that the pair (x, y) will be output if
and only if there are fewer than k other elements in Y with lower distance to x.

Similarity joins for some metrics (e.g., Manhattan distance) can be expressed
in SPARQL using built-in numeric operators, order-by, limit, etc. Other metrics
can at best be approximated; for example, SPARQL offers no direct way to
compute a square root for Euclidean distance. Even when similarity joins can be
expressed, a SPARQL engine will typically evaluate these queries by computing
distances for all pairs and then filtering by the specific criteria. Conversely, a
variety of algorithms and indexes have been proposed to evaluate similarity
joins in a more efficient manner than processing all pairs, where the available
optimisations depend on the precise definition of s. Compiling similarity joins
expressed in vanilla SPARQL into optimised physical operators would require
showing equivalence of the SPARQL expression to the similarity join supported
by the physical operator, which is not even clear to be decidable. Thus, dedicated
query operators for similarity joins address both usability and efficiency.

Though similarity joins have been well-studied, a key challenge arising in
the RDF/SPARQL setting is that of dimensionality, where we allow the user
to select any number of dimensions from the data, including dynamic dimen-
sions computed from the data (through functions, aggregations, etc.). Being
dimension-agnostic introduces various complications; for example, indexing on
all combinations of d dimensions would naively result in O(2d) different indexes,
and would not support dynamic dimensions. Such challenges distinguish the
problem of supporting similarity queries in SPARQL from typical usage in multi-
media databases (based on fixed descriptors), and also from works on supporting
domain-specific distances in query languages, such as geographic distances [1,29].

In this paper, we propose to extend SPARQL with multidimensional simi-
larity joins in metric spaces, and investigate optimised techniques for evaluating
such queries over RDF graphs. Most works thus far on extending SPARQL with
similarity features have either focused on (1) unidimensional similarity measures
that consider similarity with respect to one attribute at a time [14,26], or (2)
domain-specific fixed-dimensional similarity measures, such as geographic dis-
tance [1,29]. Other approaches rather pre-compute and index similarity scores
as part of the RDF graphs [7,12,20] or support metric distances measures exter-
nal to a query engine [19,24]. To the best of our knowledge, our proposal is the
first to consider multidimensional similarity queries in the context of SPARQL,
where the closest proposal to ours is DBSimJoin [25]: a PostgreSQL extension,
which – though it lacks features we argue to be important for the RDF/SPARQL
setting (namely k-nn semantics) – we will consider as a baseline for experiments.

Section 2 discusses literature regarding efficient similarity join evaluation,
and proposals to include such joins in database systems. In Section 3 we propose
the syntax and semantics of a SPARQL extension that supports similarity joins.
Section 4 presents our implementation, shows use-case queries and discusses pos-
sible optimisations. In Section 5 we perform experiments over two real datasets;
we compare different evaluation algorithms, further adopting DBSimJoin as a
baseline system. We conclude and outline future directions in Section 6.



2 Related Work

In this section we first describe works addressing the efficient evaluation of sim-
ilarity joins. Thereafter, we discuss works on similarity queries and distance
computation in SPARQL and other query languages for database systems.

Similarity Joins: The brute force method for computing a similarity join between
X and Y is to use a nested loop, which computes for each x ∈ X the distance to
each y ∈ Y , outputting the pair if it satisfies the similarity condition, thus per-
forming |X| · |Y | distance computations. For range or nearest-neighbour queries
over metric distances, there are then three main strategies to improve upon the
brute force method: indexing, space partitioning, and/or approximation.

A common way to optimise similarity joins is to index the data using tree
structures that divide the space in different ways (offline), then pruning distant
pairs of objects from comparison (online). Among such approaches, we highlight
vantage-point Trees (vp-Trees) [28], which make recursive ball cuts of space cen-
tred on selected points, attempting to evenly distribute objects inside and out-
side the ball. vp-Trees have an average-case search time of O(nα) on n objects,
where 0 ≤ α ≤ 1 depends on the distance distribution and dimensionality of the
space, among other factors [17], thus having an upper bound of O(n2α) for a
similarity join. Other tree indexes, such as the D-Index [6] and the List of Twin
Clusters [21], propose to use clustering techniques over the data.

Other space partitioning algorithms are not used for indexing but rather
for evaluating similarity joins online. The Quickjoin (QJ) algorithm [13] was
designed to improve upon grid-based partition algorithms [3,5]; it divides the
space into ball cuts using random data objects as pivots, splitting the data
into the vectors inside and outside the ball, proceeding recursively until the
groups are small enough to perform a nested loop. It keeps window partitions
in the boundaries of the ball in case there are pairs needed for the result with
vectors assigned to different partitions. QJ requires O(n(1 + w)dlogne) distance
computations, where w is the average fraction of elements within the window
partitions. QJ was intended for range-based similarity joins and extending QJ
to compute a k-nn similarity join appears far from trivial, since its simulation
with a range-based join would force most of the data to fall within the window
partitions, thus meaning that QJ will reach its quadratic worst case.

Another alternative is to apply approximations to evaluate similarity joins,
trading the precision of results for more efficient computation. FLANN [16] is a
library that provides several approximate k-nn algorithms based on randomised
k-d-forests, k-means trees, locality-sensitive hashing, etc.; it automatically selects
the best algorithm to index and query the data, based, for example, on a target
precision, which can be traded-off to improve execution time.

Similarity in Databases: Though similarity joins do not form part of standard
query languages, such as SQL or SPARQL, a number of systems have integrated
variations of such joins within databases. In the context of SQL, DBSimJoin [25]



implements a range-based similarity join operator for PostgreSQL. This imple-
mentation claims to handle any metric space, thus supporting various metric
distances; it is based on the aforementioned index-free QJ algorithm.

A number of works have proposed online computation of similarity joins in
the context of domain-specific measures. Zhai et. al [29] use OWL to describe
the spatial information of a map of a Chinese city, enabling geospatial SPARQL
queries that include the computation of distances between places. The Parlia-
ment SPARQL engine [1] implements an OGC standard called GeoSPARQL,
which aside from various geometric operators, also includes geospatial distance.
Works on link discovery may also consider specific forms of similarity mea-
sures [24], often string similarity measures over labels and descriptions [26].

Other approaches pre-materialise distance values that can then be incorpo-
rated into (standard) SPARQL queries. IMGpedia [7] pre-computes a k-nn self
similarity join offline over images and stores the results as part of the graph. Sim-
ilarity measures have also been investigated for the purposes of SPARQL query
relaxation, whereby, in cases where a precise query returns no or few results,
relaxation finds queries returning similar results [12,20].

Galvin et al. [8] propose a multiway similarity join operator for RDF; how-
ever, the notion of similarity considered is based on semantic similarity that tries
to match different terms referring to the same real-world entity. Closer to our
work lies iSPARQL [14], which extends SPARQL with IMPRECISE clauses that
can include similarity joins on individual attributes. A variety of distance mea-
sures are proposed for individual dimensions/attributes, along with aggregators
for combining dimensions. However, in terms of evaluation, distances are com-
puted in an attribute-at-a-time manner and input into an aggregator. For the
multidimensional setting, a (brute-force) nested loop needs to be performed; the
authors leave optimisations in the multidimensional setting for future work [14].

Novelty: To the best of our knowledge, the two proposals most closely related
to our work are DBSimJoin [25] and iSPARQL [14]. Unlike DBSimJoin, our
goal is to introduce similarity joins to the RDF/SPARQL setting. Unlike both
systems, we support k-nn semantics for similarity join evaluation, thus obviating
the need for users to explicitly specify range values, which can be unintuitive
within abstract metric spaces. We further outperform both systems (including
under range semantics) by incorporating more efficient similarity join algorithms
than the nested-loop joins of iSPARQL [14] and the Quickjoin of DBSimJoin [25].
Without the proposed extension, queries attempting to generate some kind of
similarity search in SPARQL would be a) too verbose and b) too costly, since
there is no clear strategy to avoid nested-loop executions.

3 Syntax and Semantics

In this section, we define the desiderata, concrete syntax and semantics for our
proposed extension of SPARQL for supporting similarity joins.



3.1 Desiderata

We consider the following list of desiderata for the similarity join operator:

– Closure: Similarity joins should be freely combinable with other SPARQL
query operators in the same manner as other forms of joins.

– Extensibility : There is no one-size-fits-all similarity metric [14]; hence the
operator should allow for custom metrics to be defined.

– Robustness: The similarity join should make as few assumptions as possible
about the input data in terms of comparability, completeness, etc.

– Usability : The feature should be easy for SPARQL users to adopt.

With respect to closure, we define a similarity join analogously to other forms
of joins that combine graph patterns in the WHERE clause of a SPARQL query;
furthermore, we allow the computed distance measure to be bound to a vari-
able, facilitating its use beyond the similarity join. With respect to extensibility,
rather than assume one metric, we make the type of distance metric used ex-
plicit in the semantics and syntax, allowing other types of distance metric to
be used in future. Regarding robustness, we follow the precedent of SPARQL’s
error-handling when dealing with incompatible types or unbound values. Finally,
regarding usability, we support syntactic features for both range-based semantics
and k-nn semantics, noting that specifying particular distances for ranges can
be unintuitive in abstract, high-dimensional metric spaces.

3.2 Syntax

In defining the syntax for similarity joins, we generally follow the convention
of SPARQL for other binary operators present in the standard that allow for
combining the solutions of two SPARQL graph patterns [11], such as OPTIONAL

and MINUS. Besides stating the two graph patterns that form the operands of
the similarity join, it is necessary to further define at least the following: the
attributes from each graph pattern with respect to which the distance is com-
puted, the distance function to be used, a variable to bind the distance value to,
and a similarity parameter (search radius or number of nearest neighbours).

We propose the following extension to the SPARQL 1.1 EBNF Grammar [11],
adding one new production rule (for SimilarityGraphPattern) and extend-
ing one existing production rule (GraphPatternNotTriples). All other non-
terminals are interpreted per the standard EBNF Grammar [11].

SimilarityGraphPattern ::= 'SIMILARITY JOIN ON (' Var+ ') (' Var+ ')'
( 'TOP' INTEGER | 'WITHIN' DECIMAL ) 'DISTANCE' iri 'AS' Var
GroupGraphPattern

GraphPatternNotTriples ::= GroupOrUnionGraphPattern | ... | SimilarityGraphPattern

The keyword ON is used to define the variables in both graph patterns upon
which the distance is computed; the keywords TOP and WITHIN denote a k-nn
query and an r-range query respectively; the keyword DISTANCE specifies the IRI
of the distance function to be used for the evaluation of the join, whose result



will be bound to the variable indicated with AS, which is expected to be fresh,
i.e., to not appear elsewhere in the SimilarityGraphPattern (similar to BIND).
The syntax may be extended in future to provide further customisation, such as
supporting different normalisation functions, or to define default parameters.

Depending on the metric, we could, in principle, express such queries as
vanilla SPARQL 1.1 queries, taking advantage of features such as variable bind-
ing, numeric expressions, sub-selects, etc. However, there are two key advantages
of the dedicated syntax: (1) similarity join queries in vanilla syntax are complex
to express, particularly in the case of k-nn queries or metrics without the corre-
sponding numeric operators in SPARQL; (2) optimising queries written in the
vanilla syntax (beyond nested-loop performance) would be practically infeasible,
requiring an engine that can prove equivalence between the distance metrics and
semantics for which similarity join algorithms are optimised and the plethora of
ways in which they can be expressed in vanilla syntax. We rather propose to
make similarity joins for multidimensional distances a first class feature, with
dedicated syntax and physical operators offering sub-quadratic performance.

3.3 Semantics

Pérez et al [22] define the semantics of SPARQL operators in terms of their
evaluation over an RDF graph, which results in a set of solution mappings. We
follow their formulation and define the semantics of a similarity join in terms of
its evaluation. Letting V, I, L and B denote the set of all variables, IRIs, literals
and blank nodes, respectively, then a solution mapping is a partial mapping
µ : V → I ∪ L ∪ B defined for a set of variables called its domain, denoted
dom(µ). We say that two mappings µ1, µ2 are compatible, denoted µ1 ∼ µ2, if
and only if for all v ∈ dom(µ1) ∩ dom(µ2) it holds that µ1(v) = µ2(v). Now we
can define the following core operators on sets of mappings:

X on Y := {µ1 ∪ µ2 | µ1 ∈ X ∧ µ2 ∈ Y ∧ µ1 ∼ µ2}
X ∪ Y := {µ | µ ∈ X ∨ µ ∈ Y } σf (X) := {µ ∈ X | f(µ) = true}
X \ Y := {µ ∈ X | @µ′ ∈ Y : µ ∼ µ′} X on Y := (X on Y ) ∪ (X \ Y )

where f denotes a filter condition that returns true, false or error for a mapping.
The similarity join expression parsed from the aforementioned syntax is de-

fined as s := (V, δ, v, φ), where V ⊆ V × V contains pairs of variables to be
compared; δ is a distance metric that accepts a set of pairs of RDF terms and
returns a value in [0,∞) or an error (interpreted as∞) for incomparable inputs;
v ∈ V is a fresh variable to which distances will be bound; and φ ∈ {rgr, nnk} is
a filter expression based on range or k-nn. Given two solution mappings µ1 ∼ µ2,
we denote by [[V]]µ1

µ2
the set of pairs {((µ1 ∪ µ2)(x), (µ1 ∪ µ2)(y)) | (x, y) ∈ V}

(note: [[V]]µ1
µ2

= [[V]]µ2
µ1

). We say that [µ1, . . . , µn] ∈ X1 on . . . on Xn if and
only if µ1 ∈ X1, . . . , µn ∈ Xn, and µi ∼ µj (for 1 ≤ i ≤ n, 1 ≤ j ≤ n).
We can also interpret µ = [µ1, . . . , µn] as the mapping

⋃n
i=1 µi. We denote by

X∼µ := {µ′ ∈ X | µ ∼ µ′} the solution mappings of X compatible with µ. We
define udom(X) =

⋃
µ∈X dom(µ) and idom(X) =

⋂
µ∈X dom(µ). Finally we use

v/d to denote a mapping µ such that dom(µ) = {v} and µ(v) = d.



Definition 1. Given two sets of solution mappings X and Y , we define the
evaluation of range and k-nn similarity joins, respectively, as:

X on Y
(V,δ,v,rgr)

:= {[µ1, µ2, µv] ∈ X on Y on {v/δ([[V]]µ1
µ2

)} | µv(v) ≤ r}

X on Y
(V,δ,v,nnk)

:= {[µ1, µ2, µv] ∈ X on Y on {v/δ([[V]]µ1
µ2

)} | µv(v) ≤ κδ,kµ1,Y
}

when v 6∈ udom(X) ∪ udom(Y ) or error otherwise, where:

κδ,kµ1,Y
:= min

{
δ([[V]]µ1

µ2
)
∣∣ µ2 ∈ Y∼µ1 ∧ |{µ′2 ∈ Y∼µ1

| δ([[V]]µ1

µ′
2
) < δ([[V]]µ1

µ2
)}| < k

}
.

We return an error when v 6∈ udom(X) ∪ udom(Y ) to emulate a similar

behaviour to BIND in SPARQL. Per the definition of κδ,kµ1,Y
, more than k results

can be returned for µ1 in the case of ties, which keeps the semantics deterministic.
We define bag semantics for similarity joins in the natural way, where the

multiplicity of µ ∈ X ons Y is defined to be the product of the multiplicities of
the solutions µ1 ∈ X and µ2 ∈ Y that produce it.

3.4 Algebraic Properties

We now state some algebraic properties of the similarity join operators. We use
onr, onn, ons∈ {onr,onn} to denote range, k-nn and similarity joins, respectively.

Proposition 1 onr is commutative and distributive over ∪.

Proof. Assume r = (V, δ, v, rgr). For any pair of sets of mappings X and Y :

X onr Y := {[µ1, µ2, µv] ∈ X on Y on {[v/δ([[V]]µ1
µ2

)]} | µv(v) ≤ r}
≡{[µ2, µ1, µv] ∈ Y on X on {[v/δ([[V]]µ2

µ1
)]} | µv(v) ≤ r} ≡ Y onr X

Which proves the commutativity. For left-distributivity over ∪:

X onr (Y ∪ Z) := {[µ1, µ2, µv] ∈ X on (Y ∪ Z) on {v/δ([[V]]µ1
µ2

)} | µ(v) ≤ r}
≡{[µ1, µ2, µv] ∈ X on Y on {v/δ([[V]]µ1

µ2
)} | µ(v) ≤ r}∪

{[µ1, µ2, µv] ∈ X on Z on {v/δ([[V]]µ1
µ2

)} | µ(v) ≤ r}
≡ (X onr Y ) ∪ (X onr Z)

Commutativity and left-distributivity over ∪ imply distributivity over ∪. ut

Proposition 2 onn is not commutative nor distributive over ∪.

Proof. As counterexamples for commutativity and distributivity, note that there
exist sets of mappings X, Y , Z with |X| = n, |Y | = |Z| = 2n, n ≥ k such that:

– Commutativity: |X onn Y | = nk and |Y onn X| = 2nk.
– Distributivity: |X onn (Y ∪Z)| = nk and |(X onn Y )∪ (X onn Z)| = 2nk. ut



Proposition 3 onn is right-distributive over ∪.

Proof. Assume n = (V, δ, v, nnk). We see that:

(X ∪ Y ) onn Z := {[µ1, µ2, µv] ∈ (X ∪ Y ) on Z on {v/δ([[V]]µ1
µ2

)} | µv(v) ≤ κδ,kµ1,Z
}

≡ {[µ1, µ2, µv] ∈ X on Z on {v/δ([[V]]µ1
µ2

)} | µv(v) ≤ κδ,kµ1,Z
}∪

{[µ1, µ2, µv] ∈ Y on Z on {v/δ([[V]]µ1
µ2

)} | µv(v) ≤ κδ,kµ1,Z
}

≡ (X onn Z) ∪ (Y onn Z) ut

Proposition 4 (X ons Y ) ons′ Z 6≡ X ons (Y ons′ Z) holds.

Proof. As a counter example, consider that s and s′ bind distance variables v
and v′ respectively such that v′ ∈ udom(X), v′ /∈ udom(Y ) ∪ udom(Z) and
v /∈ udom(X) ∪ udom(Y ) ∪ udom(Z). Now (X ons Y ) ons′ Z returns an error as
the left operand of ons′ assigns v but X ons (Y ons′ Z) will not. ut

Finally, we discuss how the defined operators relate to other key SPARQL
operators. The condition in claim 3 is analogous to well-designed queries [22].

Proposition 5 Let s = (V, δ, v, φ). If each mapping in X on Y binds all variables
in V and v 6∈ udom(X) ∪ udom(Y ) ∪ udom(Z), then the following hold:

1. (X ons Y ) on Z ≡ (X on Z) ons Y
2. (X ons Y ) \ Z ≡ (X \ Z) ons Y if udom(Z) ∩ (udom(Y )− idom(X)) = ∅
3. (X ons Y ) on Z ≡ (X on Z) ons Y if udom(Z) ∩ (udom(Y )− idom(X)) = ∅
4. σf (X ons Y ) ≡ σf (X) ons Y if f is scoped to idom(X).

Proof. We prove each claim in the following:

1. The third step here is possible as φ does not rely on Z (per the assumptions).

(X ons Y ) on Z := {[µ1, µ2, µv] ∈ X on Y on {v/δ([[V]]µ1
µ2

)} | φ(µv)} on Z

≡ {[µ1, µ
′
1, µ2, µv] ∈ X on Z on Y on {v/δ([[V]]µ1

µ2
)} | φ(µv)}

≡ {[µ1, µ2, µv] ∈ (X on Z) on Y on {v/δ([[V]]µ1
µ2

)} | φ(µv)}
≡ (X on Z) ons Y

2. For a mapping µ = [µ1, µ2] such that udom(Z) ∩ (dom(µ2)− dom(µ1)) = ∅,
there does not exist µ′ ∈ Z such that µ ∼ µ′ if and only if there does not
exist µ′ ∈ Z such that µ1 ∼ µ′. Taking µ1 ∈ X and µ2 = [µ′2, µ

′′
2 ] ∈ Y on

{v/δ([[V]]µ1
µ2

) from X ons Y , the result then holds per the given assumptions.
3. The second step here uses the previous two results. The third step uses the

right-distributivity of onr and onn over ∪ proven in previous propositions.

(X ons Y ) on Z := ((X ons Y ) on Z) ∪ ((X ons Y ) \ Z)

≡ ((X on Z) ons Y ) ∪ ((X \ Z) ons Y )

≡ ((X on Z) ∪ (X \ Z)) ons Y ≡ (X on Z) ons Y

4. For a mapping µ = [µ1, µ2] and filter f scoped to dom(µ1), f(µ) is true if and
only if f(µ1) is true. Taking µ1 ∈ X and µ2 = [µ′2, µ

′′
2 ] ∈ Y on {v/δ([[V]]µ1

µ2
)}

from X ons Y , the result then holds per the given assumptions. ut



SELECT ?c1 ?c2 ?d WHERE {
{ ?c1 wdt:P31 wd:Q6256 ; # Countries

wdt:P2250 ?lifex1 ; wdt:P2131 ?ngdp1 ; # Life expectancy, Nominal GDP
wdt:P4010 ?gdp1 ; wdt:P2219 ?growth1 ; # GDP, GDP growth rate
wdt:P1081 ?hdi1 ; wdt:P361 wd:Q12585 } # HDI, Latin America

SIMILARITY JOIN
ON (?lifex1 ?ngdp1 ?gdp1 ?growth1 ?hdi1)

(?lifex2 ?ngdp2 ?gdp2 ?growth2 ?hdi2)
TOP 1 DISTANCE sim:manhattan AS ?d # 1-nn using Manhattan
{ ?c2 wdt:P31 wd:Q6256 ; # Countries

wdt:P2250 ?lifex2 ; wdt:P2131 ?ngdp2 ; # Life expectancy, Nominal GDP
wdt:P4010 ?gdp2 ; wdt:P2219 ?growth2 ; # GDP, GDP growth rate
wdt:P1081 ?hdi2 ; wdt:P30 wd:Q46 }} # HDI, Europe

?c1 ?c2 ?d

wd:Q419 [Peru] wd:Q218 [Romania] 0.129
wd:Q298 [Chile] wd:Q45 [Portugal] 0.134
wd:Q96 [Mexico] wd:Q43 [Turkey] 0.195

Fig. 1. Query for European countries most similar to Latin American countries in
terms of a variety of economic indicators, with sample results

4 Use-Cases, Implementation and Optimisation

Having defined the syntax and semantics of the similarity join operator, we now
illustrate how the operator can be used, implemented and optimised.

4.1 Use-Case Queries

To illustrate the use of similarity joins in SPARQL, we will now present three
use-case queries, demonstrating different capabilities of the proposal. All three
queries are based on real-world data from Wikidata [27] and IMGpedia [7].

Similar Countries: In Figure 1 we present a similarity query for Wikidata [27]
that, for each Latin American country, will return the European country with the
most similar welfare indicators to it, considering life expectancy, Gross Domestic
Product (GDP), nominal GDP, GDP growth rate and Human Development
Index (HDI).1 The query performs a 1-nn similarity join between both sets of
countries based on the Manhattan distance over the given dimensions. The figure
also presents three sample pairs of results generated by the query (though not
returned by the query, we add English labels for illustration purposes).

Similar Elections: In Figure 2, we present a more complex similarity query over
Wikidata to find the four most similar elections to the 2017 German Federal
Election in terms of the number of candidates, parties and ideologies involved.
The query involves the use of aggregates and paths in the operand graph patterns
of the similarity join. The figure also presents the results of the query.

1 We use prefixes as defined in http://prefix.cc.

http://prefix.cc


SELECT ?e2 ?c1 ?c2 ?p1 ?p2 ?d
WHERE {
{ SELECT (wd:Q15062956 AS ?e1)

(COUNT(DISTINCT ?candidate) AS ?c1)
(COUNT(DISTINCT ?party) AS ?p1)
(COUNT(DISTINCT ?ideology) AS ?i1) WHERE {

wd:Q15062956 wdt:P726 ?candidate . # candidates
?candidate wdt:P102 ?party . ?party wdt:P1387 ?ideology.}}# parties, ideologies

SIMILARITY JOIN ON (?c1 ?p1 ?i1) (?c2 ?p2 ?i2)
TOP 4 DISTANCE sim:manhattan AS ?d # 4-nn using Manhattan
{ SELECT ?e2

(COUNT(DISTINCT ?candidate) AS ?c2)
(COUNT(DISTINCT ?party) AS ?p2)
(COUNT(DISTINCT ?ideology) AS ?i2) WHERE {

?e2 wdt:P31/wdt:P279* wd:Q40231 ; wdt:P726 ?candidate . # elections, candidates
?candidate wdt:P102 ?party . ?party wdt:P1387 ?ideology . # parties and ideologies

} GROUP BY ?e2 }}

?e2 ?c1 ?c2 ?p1 ?p2 ?d

wd:Q15062956 [2017 German Federal Election] 10 10 8 8 0.000
wd:Q1348890 [2000 Russian Presidential Election] 10 10 8 7 0.220
wd:Q1505420 [2004 Russian Presidential Election] 10 6 8 8 0.240
wd:Q19818995 [2017 Saarland State Election] 10 7 8 7 0.293

Fig. 2. Query for elections similar to the 2017 German Federal Election in terms of
number of candidates, parties and ideologies participating, with results

Similar Images: Figure 3 presents a similarity query over IMGpedia [7]: a mul-
timedia Linked Dataset. The query retrieves images of the Capitol Building in
the US, and computes a 3-nn similarity join for images of cathedrals based on
a precomputed Histogram of Oriented Gradients (HOG) descriptor, which ex-
tracts the distribution of edge directions of an image. The figure further includes
a sample of results for two images of the Capitol Building, showing for each, the
three most similar images of cathedrals that are found based on edge directions.

4.2 Implementation

The implementation of the system extends ARQ – the SPARQL engine of Apache
Jena2 – which indexes an RDF dataset and receives as input a (similarity) query
in the syntax discussed in Section 3.2. The steps of the evaluation of an extended
SPARQL query follow a standard flow, namely Parsing, Algebra Optimi-
sation, Algebra Execution, and Result Iteration. The Parsing stage
receives the query string defined by a user, and outputs the algebraic representa-
tion of the similarity query. Parsing is implemented by extending Jena’s Parser
through JavaCC3, wherein the new keywords and syntax rules are defined. The
Algebra Optimisation can then apply rewriting rules (discussed presently)
over the query, further turning logical operators (e.g., knnsimjoin) into physical

2 http://jena.apache.org
3 https://javacc.github.io/javacc/

http://jena.apache.org
https://javacc.github.io/javacc/


SELECT ?img1 ?img2 WHERE {
{ ?img1 imo:associatedWith wd:Q54109 . # Capitol Building

?vector1 a imo:HOG ; imo:describes ?img1 ; imo:value ?hog1 .} # HOG descriptor
SIMILARITY JOIN ON (?hog1) (?hog2) TOP 3 DISTANCE sim:manhattan AS ?d # 3nn w/ Manhattan
{ ?cathedral wdt:P31 wd:Q2977 . # Cathedrals

?img2 imo:associatedWith ?cathedral .
?vector2 a imo:HOG ; imo:describes ?img2 ; imo:value ?hog2 .}} # HOG descriptor

?img1 ?img2 (grouped)

Fig. 3. Query for the three images of cathedrals most similar to each image of the US
Capitol Building in terms of the HOG visual descriptor

operators (e.g., nestedloop). Next, Algebra Execution begins to evaluate the
physical operators, with low-level triple/quad patterns and path expression op-
erators feeding higher-level operators. Finally, Result Iteration streams the
final results from the evaluation of the top-level physical operator. All physical
similarity-join operators follow the same lazy evaluation strategy used for the
existing join operators in Jena.

4.3 Similarity Join Optimisation and Query Planning

The Parsing phase will output either a knnsimjoin or rangesimjoin logical opera-
tor for the similarity join. The Algebra Optimisation phase must then select
an algorithm with which to instantiate these operators. As previously discussed,
for a similarity join X ons Y , the naive strategy of computing a nested-loop join
will require |X| · |Y | distance computations. The algorithms we include with our
implementation of similarity joins are: nested loops, vp-Trees4 and QJ for range
queries; and nested loops, vp-Trees and FLANN5 for k-nn.

Nested loops constitute a baseline for evaluating similarity joins without op-
timisation, as would be applied for similarity queries written in vanilla SPARQL

4 We use the library provided by Chambers at https://github.com/jchambers/

jvptree.
5 We use the Java implementation provided by Stavrev at https://gitlab.com/

jadro-ai-public/flann-java-port.git.

https://github.com/jchambers/jvptree
https://github.com/jchambers/jvptree
https://gitlab.com/jadro-ai-public/flann-java-port.git
https://gitlab.com/jadro-ai-public/flann-java-port.git


syntax or in iSPARQL [14]. On the other hand, QJ is used in DBSimJoin [25],
and thus we also include it as a baseline measure, although it does not support
k-nn, which we previously argued to be an important feature in this setting.

In initial experiments we noted that the results of similarity queries as de-
fined herein sometimes gave unintuitive results when the magnitude of values in
one dimension was naturally much greater or much smaller than that of other
dimensions. Taking the query of Figure 1, for example, while the values for GDP
tends to be in the order of billions or trillions, the values for HDI fall in [0, 1]; as
defined, the HDI dimension would have a negligible effect on the results of the
similarity join. To address this, we apply pre-normalisation of each dimension
such that the values fall in the range [0, 1].

Aside from adopting efficient similarity join algorithms, we can further op-
timise evaluation by applying query planning techniques over the query as a
whole: given an input similarity query, we can try to find an equivalent, more
efficient plan through query rewriting rules. While Jena implements techniques
for optimising query plans in non-similarity graph patterns, we further explored
both rewriting rules and caching techniques to try to further optimise the over-
all query plan. However, the techniques we have implemented had negligible or
negative effect on runtimes, yielding a negative result, because of which further
optimisations in this direction are left as future work.

Regarding rewriting rules, in fact there is little opportunity for such rules
to optimise queries with similarity joins for two main reasons. One reason is
that since similarity joins are a relatively expensive operation, optimally the
results returned from the sub-operands should be as small as possible at the
moment of evaluation; this often negates the benefit of delaying operations until
after the similarity join. Another reason is that for k-nn similarity joins, the
operation is not commutative, nor associative (see Section 3.3) preventing join
reordering. The most promising rewritings from a performance perspective relate
to properties 2 and 4 of Proposition 5, as they reduce the size of the similarity
join by first applying the negation or filter, respectively, on the left operand;
however, we did not encounter such cases (we further believe that queries are
more likely to be written by users in the more optimal form).

Since the operands of similarity joins often have significant overlap in terms of
triple patterns, an avenue for optimisation is evaluating this overlap once, reusing
the results across both sub-operands. As an example, for the query in Figure 1,
both operands have the same graph pattern except the last triple pattern, which
distinguishes European and Latin American countries. We implemented such a
technique, which we expected would reduce the runtime by avoiding redundant
computation. However, experiments contradicted this expectation, where sim-
ilar or slightly worse performance was found, for the following reasons. First,
the overlap may be less selective than the non-overlapping patterns, making it
disadvantageous to evaluate first; conversely, if we conservatively identify the
maximal overlap maintaining the original selectivity-based ordering, the overlap
will often be negligible. Second, even in favourable examples where a significant
and selective overlap was present, no effect was seen due to lower-level caching.



5 Evaluation

We now present our evaluation, comparing the performance of different physical
operators for similarity joins in the context of increasingly complex SPARQL
queries, as well as a comparison with the baseline system DBSimJoin. We con-
duct experiments with respect to two benchmarks: the first is a benchmark we
propose for Wikidata, while the second is an existing benchmark used by DB-
SimJoin based on colour information. All experiments were run on a Windows
10 machine with a 4-core Intel i7-7700 processor @2.80GHz and 16GB RAM. We
provide code, queries, etc., online: https://github.com/scferrada/jenasj.

5.1 Wikidata: k-nn Self-Similarity Queries

In order to compare the relative performance of the three similarity join algo-
rithms implemented: nested loop, vp-Trees and FLANN, we present performance
results for a set of self-similarity join queries extracted from Wikidata6. To ar-
rive at these queries, we begin with some data exploration. Specifically, from the
dump, we compute the ordinal/numeric characteristic sets [18] by: (1) filtering
triples with properties that do not take numeric datatype values, or that take
non-ordinal numeric datatype values (e.g., Universal Identifiers); (2) extracting
the characteristic sets of the graph [18] along with their cardinalities, where,
specifically, for each subject in the resulting graph, we extract the set of prop-
erties for which it is defined, and for each such set, we compute for how many
subjects it is defined. Finally, we generate k-nn self-similarity join queries from
1,000 ordinal/numeric characteristic sets containing more than 3 properties that
were defined for more than 500 subjects. The values of k used are 1, 4, 8. The
joins were executed several times per algorithm to make a better estimation of
the execution time, since vp-Trees and FLANN present randomised stages; we
then report average runtimes over the runs.

Figure 4 presents the average execution time for differing numbers of entities,
defined to be the cardinality of the solutions |X| input to the self-similarity
join X onn X ′, where X ′ rewrites the variables of X in a one-to-one manner.
Highlighting that the y-axis is presented in log scale, we initially remark that
the value of k appears to have an effect on the execution time roughly comparable
with the associated increase in results that can be expected. We can see a general
trend that as the number of entities in the input initially increases, so too do
the execution times. Comparing the algorithms, we see significant differences in
performance depending on the similarity join algorithm, where (as expected) the
nested loop strategy performs poorly. On the other hand, vp-Trees and FLANN
are competitive with each other, showing similar performance; both see less sharp
increases in time as the number of input entities increases. More specifically,
FLANN is faster in 54.7% of the queries; however, we remark that, unlike vp-
Trees, FLANN computes an approximation of the real result where, in these
experiments, it gave 98% precision overall.

6 We use a truthy dump available in February, 2020.

https://github.com/scferrada/jenasj


Fig. 4. Average execution time by number of input solutions (entities) for k = 1, 4, 8

In terms of absolute times, we find that both FLANN and vp-Trees can
compute self-similarity joins X onn X ′ where |X| < 20000 and 1 ≤ k ≤ 8 in
less than one second (nested loops can take minutes on such queries), and can
compute most of the queries analysed (|X| < 120000) within 10 seconds for
k = 1, 40 seconds for k = 4, and 100 seconds for k = 8.

5.2 Corel Colour Moments: Range Similarity Queries

We compare our system with the closest found in literature, DBSimJoin [25], a
PostgreSQL extension that supports range-based similarity joins in metric spaces
implementing the QJ algorithm. As DBSimJoin only supports range queries, we
compare it with the vp-Tree implementation in Jena (Jena-vp). The DBSimJoin
system was originally tested with synthetic datasets and with the Corel Colour
Moments (CCM) dataset, which consists of 68,040 records of images, each de-
scribed with 9 dimensions representing the mean, standard deviation and skew-
ness for the colours of pixels in the image. For CCM, the DBSimJoin paper only
reports the effect of the number of QJ pivots on the execution time when r = 1%
of the maximum possible distance in the space [25]. We compare the DBSimJoin
implementation with our system for more general performance metrics, using
CCM. We converted the CCM dataset to an RDF graph using a direct mapping.

To find suitable distances for the query, we compute a 1-nn self-similarity join
on the data, where we take the maximum of minimum distances in the result:
5.9; this distance ensures that each object is paired with at least another object
in a range-based query. We compare the runtime of both systems with increasing
values of r, using r = 5.9 as an upper bound.

Table 1 presents the results: the execution time of DBSimJoin grows rapidly
with r because of the quick growth of the size of the window partitions in the
QJ algorithm. DBSimJoin crashes with r ≥ 0.4 so we include results between
0.3 and 0.4 to illustrate the growth in runtime. The runtime of Jena-vp increases
slowly with r, where more tree branches need to be visited as the result-set size
increases up to almost 4 · 108. Our implementation does not crash with massive
results because it fetches the bindings lazily: it obtains all pairs within distance



Table 1. Execution times in seconds for range similarity joins over the CCM Dataset.

Distance # of Results DBSimJoin (s) Jena-vp (s)

0.01 68,462 47.22 6.92
0.1 68,498 84.00 7.45
0.3 72,920 775.96 9.63
0.39 92,444 1,341.86 11.17
0.4 121,826 – 11.30
1.0 4,233,806 – 35.01
5.9 395,543,225 – 1,867.86

r for a single object and returns them one by one, only computing the next
batch when it runs out of pairs; on the other hand, QJ starts piling up window
partitions that replicate the data at a high rate, thus causing it to crash.

Considering range-based similarity joins, these results indicate that our sys-
tem outperforms DBSimJoin in terms of efficiency (our system is faster) and
scalability (our system can handle larger amounts of results).

6 Conclusions

Motivated by the fact that users of knowledge graphs such as Wikidata are
sometimes interested in finding similar results rather than crisp results, we have
proposed and evaluated an extension of the SPARQL query language with mul-
tidimensional similarity joins. Applying similarity joins in the RDF/SPARQL
setting implies unique challenges in terms of requiring dimension-agnostic meth-
ods (including dimensions that can be computed by the query), as well as data-
related issues such as varying magnitudes amongst attributes. We thus present
a novel syntax and semantics for multidimensional similarity joins in SPARQL,
an implementation based on Apache Jena, a selection of optimised physical op-
erators for such joins, along with use-case queries to illustrate the extension.

We evaluate three different strategies for implementing nearest neighbour
joins: a brute-force method (nested loops), an online index-based approach (vp-
Trees), and an approximation-based approach (FLANN). Of these, nested loops
and vp-Trees can also be applied for range queries. Our experiments show that
of these alternatives, vp-Trees emerge as a clear winner, being an exact algo-
rithm that supports both k-nn and range similarity joins, as well as mostly
outperforming the other algorithms tested. Our implementation with vp-Trees
(and FLANN) outperforms the brute-force nested loop approach – which is how
multidimensional distances expressed in vanilla SPARQL queries or queries in
iSPARQL are evaluated by default – by orders of magnitude. Compared with the
only other system we are aware of that implements multidimensional similarity
joins as part of a database query language – DBSimJoin – our approach can
handle k-nn queries, as well as much larger distances and result sizes.

Based on our results, we believe that similarity joins are an interesting direc-
tion to explore for SPARQL, where they could be used in applications such as



entity matching, link prediction, recommendations, multimedia retrieval, query
relaxation, etc.; they would also provide novel query functionality for users of
SPARQL endpoints, allowing them to find entities in a knowledge graph that
are similar within a metric space defined in the query by the user themselves.
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27. Vrandečić, D., Krötzsch, M.: Wikidata: A Free Collaborative Knowledgebase.
Comm. ACM 57, 78–85 (2014)

28. Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in gen-
eral metric spaces. In: Symposium on Discrete Algorithms (SODA). vol. 93, pp.
311–321 (1993)

29. Zhai, X., Huang, L., Xiao, Z.: Geo-spatial query based on extended SPARQL.
In: International Conference on Geoinformatics (GEOINFORMATICS). pp. 1–4.
IEEE (2010)

View publication stats

https://www.researchgate.net/publication/346500483

	Extending SPARQL with Similarity Joins

