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ABSTRACT

Current knowledge graphs encompass diverse data formats, in-
cluding images, text, tables, audio files, and videos. Additionally,
the graph database ecosystem is required to support multiple co-
existing data models. Addressing these challenges is essential for
promoting interoperability between data sources. This demo in-
troduces MillenniumDB, a high-performing, open-source graph
database handling this diversity of data formats and models.

MillenniumDB is a multi-modal, multi-model graph database,
supporting the popular property graph paradigm, the SemanticWeb
format RDF, and the multi-layered graph model, which combines
and extends the two. In terms of querying, its provides support
for a Cypher-like language over property graphs and multilayered
graphs, as well as SPARQL 1.1 support over RDF. The engine is build
on a solid theoretical foundation and it leverages worst-case optimal
join algorithms in combination with traditional relational query op-
timization. It also support a wide array of graph-specific tasks such
as path finding, pattern recognition, and similarity search on multi-
modal data. In this demo, we will showcase how MillenniumDB is
currently being used to host three public multi-modal knowledge
graphs. The first one, a multi-layered graph called TelarKG, was
developed at IMFD Chile to track the information about the Chilean
constitutional reform. In the second one, called BibKG, we integrate
information about Computer Science publications from different
sources and make them available as a property graph. Finally, for
RDF, we provide a SPARQL endpoint for Wikidata, the largest
knowledge graph openly available online. We remark that our end-
points have stable links, allowing the audience to post queries using
their Web browser with no restrictions, and will be available during
the review process and during the demo.
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1 INTRODUCTION

Graph databases have become a key database model in recent years.
Graphs offer a much more intuitive and flexible representation of
several application domains than traditional relational databases,
including bioinformatics, social networks, transport, and more be-
sides [2, 13]. Graphs can also be used to integrate information that
spans multiple domains, as seen in open knowledge graphs [13]
such as Wikidata [10]. The popularity of graph databases has

spurred the development of several data models, such as property
graphs [1] and RDF [7]; query languages including Cypher [11],
SPARQL [6] and GQL [9]; numerous graph database engines, and
commercial products such as Neo4j [24], Amazon Neptune [17] and
TigerGraph [19]; among other developments.

But even though the graph database ecosystem is thriving, there
are still many requirements that are not yet addressed or entirely
solved by current systems. As we explain below, some of these re-
quirements involve the wide range of models and query languages
that are currently available. We also find newer technical require-
ments related to graph analytics and machine learning, driven by
modern applications using graph data. This shows that there is still
a need to develop graph database systems.

In this demonstration we present MillenniumDB [23]: an open-
source graph database system built specifically to address the fol-
lowing three fundamental requirements. The first and most impor-
tant requirement is multi-modality. Knowledge graphs today are
composed of data that is stored in different formats. Wikidata [10],
for example contains images, text data, tables, and even audio files.
However, existing systems can only point to these resources, filter-
ing them based on their neighboring graph structure, or possible
information about their names. Hence, we envision that graph data-
base systems should be able to filter multi-modal data in a

native way, allowing queries that, for example, return scientists
from a particular university working on topics relevant for SIGMOD
(text), or return paintings similar to the artwork by a given artist
(images). We address this by incorporating vector-based similarity
search into our graph query engine.

The second fundamental requirement is incorporating sup-

port for different data models and query languages. A key
challenge relating to interoperability within the graph database
ecosystem is the variety of models and query languages. From prop-
erty graphs through RDF to RDF∗, and from Cypher through GQL
to SPARQL, numerous standardization efforts have not yet resulted
in a single model and query language followed and implemented by
every graph database system. Furthermore, given the differences
between, say, property graphs and RDF, there are enough reasons to
assume we are several years short of a unifying standard, if indeed
such a standard will ever emerge. Hence, we envision that systems

should natively support several query languages and data

models. We have addressed this requirement by making the inter-
operability of our engine a priority from its inception, and a key
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criterion of its design. The foundations of these distinctive models
and query languages share key characteristics that can be exploited
for interoperability purposes. Different data models are taken care
of by various indexes, all of which provide interoperable interfaces
that are then consumed by our engine. This allows us to support,
on the same system, a range of graph-based models, including RDF,
property graphs, and even graphs using a custom model based on
quads that we call multilayer graphs [3].

As is usual in graph databases, performance is one of the most
important aspects. In this context, MillenniumDB aims to provide
and push the boundaries of state-of-the-art performance. Notably,
our query engine integrates traditional join-based algorithms with
novel worst-case optimal algorithms. The coordination between
these two query answering approaches is important to ensure best
performance when dealing with complex queries [12].

In comparison to existing alternatives, most graph databases
work with one data model (with a notable exception being Amazon
Neptune). In contrast, MillenniumDB supports both RDF and mul-
tilayer graphs, the latter being a model flexible enough to store a
generalized form of property graphs [3]. In terms of multi-modality,
to the best of our knowledge, there are no graph database systems
that can support both semantic similarity search and graph query
answering at the same time. Neo4j, for example, supports storing
tensor data for nodes, but such tensors can only be consumed for
analytics, and do not integrate with querying functionalities. Unlike
many alternatives, MillenniumDB is an open source graph database
engine that can be accessed, extended and tested freely.

2 SYSTEM OVERVIEW

We now give a brief overview of the MillenniumDB graph database
system. Our architecture is grouped into two main components:
the Storage Manager, that orchestrates the index data structures
and manages the disk buffer, and the Query Processor, in charge
of producing and executing query plans. Figure 1 provides a quick
overview of our architecture, and the full codebase can be found at
https://github.com/MillenniumDB.

2.1 Storage Manager

MillenniumDB stores the graph internally as tuples of 8-byte iden-
tifiers, distinguishing the different components in data models (e.g.
nodes, edges and values in a property graph database). Then we
use B+ trees to store graphs. The number of B+ trees depends on
the data model used for a particular domain graph, but, for ex-
ample, in the case of property graphs one would have to store
relations (sourceid, edgeid, targetid) specifying the id of the source
and target nodes, and of the edge nodes, a relation storing all ids,
a relation storing the label of each object, and a relation storing
every attribute of a node or edge. In order to support traditional and
worst-case optimal joins, we store different permutations for each
of these relations (as in e.g. [14]), which allow us to access easily
all information for nodes or edge, for example, all target nodes of a
given edge, or all edges going from a source node, etc.

To support similarity queries, we also support a binary rela-
tion that contains tensor data for (a subset of) node or edge ids.
These tensors are further indexed using an LSHForest scheme [5],
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Figure 1:MillenniumDB system architecture

which can be created for a variety of distances, including Euclidean
distance and angular distance.

2.2 Query Processor

The evaluation of queries in MillenniumDB follows the standard
pipeline of a database query evaluation process. The string of the
query is first parsed, and then translated into a logical plan. In turn,
this logical plan is analyzed and transformed into a physical plan,
which can then be evaluated.

Two notable inclusions in our engine are support formultiway

joins using worst-case optimal algorithms and support for

similarity search. Regarding multiway joins, our logical query
plans may include pieces of graph patterns that are evaluated using
Leapfrog Trie Join (LTJ) [21], a worst case optimal join that works by
computing the join of several relations at once. These types of joins
have been shown to produce much better results for more complex
graph patterns (see e.g. [4, 14, 16]), and indeed we also perceive
this in our own evaluation [23]. Regarding similarity search, our
system integrates a query command to ask for node ids that are
most similar to a given node or resource. To evaluate this command,
the query engine treats LSHForests as a virtual relation, which is
then integrated into physical plans.

2.3 Performance

In a previous article [23], we presented an experimental evaluation
of MillenniumDB. In particular, we evaluated five versions of Mil-
lenniumDB: MillenniumDB-LF, the default version implementing
the Leapfrog Trie Join algorithm; MillenniumDB-GR, implementing
a greedy algorithm for selecting the join order; MillenniumDB-SL,
which implements the Selinger join planner; MillenniumDB-BFS,
which uses a breadth-first search algorithm to evaluate path queries;
and MillenniumDB-DFS, which uses a depth-first algorithm. We
also evaluated five graph-oriented database systems: Blazegraph
[20], a Java-based RDF store; JenaTDB [18], a component of Jena
for storing and query RDF data; JenaLF [14], a version of JenaTDB
implementing a Leapfrog-style algorithm; Virtuoso [8], a relational-
based RDF store; and Neo4J [24], a popular graph database system.

The experimental evaluation was based on Wikidata [22], which
is one of the largest and most diverse real-world knowledge graphs
that is publicly available. Specifically, we used a “truthy” dump
version, keeping only triples in which the subject position is a
Wikidata entity, and the predicate is a direct property. The size of
the dataset was 1,257,169,959 RDF triples, resulting in the following
storage costs for each system: MillenniumDB = 203GB, BlazeGraph
= 70GB, JenaTDB = 110GB, JenaLF = 195GB, Virtuoso = 70GB, and
Neo4j = 112GB. MillenniumDB uses extra disk space because of the
additional indices needed to support worst-case optimal join over
domain graphs (similar to the case of JenaLF).
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We conducted a performance evaluation focused on two funda-
mental query features: graph pattern matching and path match-
ing. Our evaluation of graph pattern matching included 835 real-
world graph pattern queries and 850 synthetic queries. The real-
world queries were obtained from the Wikidata SPARQL query
log [15], and were grouped into single (399 queries) and multiple
(436 queries), according to the number of triple patterns. The for-
mer group tests the triple matching capabilities of the systems,
whereas the latter group tests join performance. In order to cre-
ate the synthetic graph pattern queries, we selected 17 different
complex join patterns (based on [14]), then we generated 50 dif-
ferent queries for each pattern, resulting in a total of 850 queries.
These synthetic queries were designed to test the performance of
worst-case optimal joins. For evaluating path matching, we used
1,683 queries involving regular path expressions (i.e. 2RPQ queries).
These queries were extracted from a log of SPARQL queries that
produced timeouts on the Wikidata endpoint [15].

To simulate a realistic behaviour, we did not split queries into
cold/hot run segments. Rather, we ran queries in succession, one
after another, after a cold start of each system, and after cleaning
the OS cache. We recorded the execution time of each individual
query, which includes iterating over all results, and set a limit of
100,000 distinct results for each one. Additionally, we defined a
timeout of 10 minutes per query for each system.

In the evaluation of graph pattern queries, MillenniumDB was
the fastest, followed by Virtuoso, JenaLF, Blazegraph, JenaTDB and
Neo4j (this considering the best average time each). Specifically, for
single queries, MillenniumDB obtained an average time of 0.07s (the
best time for graph pattern queries), and Blazegraph was the second
with 2.21s. In the case of real-worldmultiple queries, MillenniumDB-
LF obtained an average time of 4.84s, followed by Virtuoso with
7.87s, and Neo4j was the last one with 75.55s (the worst time for
graph pattern queries). For synthetic queries, MillenniumDB-LF
obtained an average time of 0.38s, followed by JenaLF with 0.88.

In the case of path queries, MillenniumDB shown the lowest
times, followed by Virtuoso, Jena, Neo4j, and BlazeGraph. Specifi-
cally, both MillenniumDB-BFS and MillenniumDB-DFS obtained
an average time of 1.1s, Virtuoso was the second with 5.8s, and
Blazegraph was the last one with 27.6s. It is important to mention
that MillenniumDB and Neo4J were the only systems able to handle
timeouts without being restarted. Moreover, Blazegraph, Jena and
Virtuoso reported execution errors during path query evaluation.

3 DEMONSTRATION

The goals of this demonstration are twofold. First, we aim to show
how MillenniumDB addresses the three fundamental requirements
presented in the introduction: how it handles multi-modal data,
how it incorporates support for different data models and query
languages, and how its design pushes the boundaries of state-of-the-
art performance in query evaluation. Second, the demonstration
is designed to provide attendees with a hands-on experience with
MillenniumDB. Specifically, during the demonstration, attendees
will learn about our datasets and services, retrieve interesting infor-
mation in a variety of domains, get an idea of how MillenniumDB
works, and understand how it could be used for their research or
applications.

Figure 2: Exploring scientific contributions of Alexandra Me-

liou with BibKG, powered by MillenniumDB. Data is queried

using a property graph query language.

3.1 The Experience

For each dataset, participants will be able to either access the end-
points through their web browser, or by navigating in a dedicated
computer. Endpoints carry the following information:

• A brief description of the dataset, how data was gathered,
and what it contains.

• A description of the schema of the graph.
• A wide variety of query examples they can try out.
• A white-box interface where users can alter examples or try
out new queries on their own.

Learning about the internals of the database. Additionally, for
the demonstration, a selection of example queries will be linked
with a description of the logical plan, the physical plan, and the
search process that generated these plans. This will give users
more knowledge on how their queries were evaluated, whether
traditional or worst-case optimal joins were used, and how was the
semantic similarity query processed, if applicable.

Following the same idea, our dedicated computer will have a
version of the endpoint for which the console will show, in real
time, the plans selected for this query. Our team will then be able to
explain, in real time, the process used to select the best alternative
for evaluating the query, and the technology used by the engine.

Finally, attendees will be encouraged to download and try out
MillenniumDB on their personal computers. The documentation
and installation instructions are currently available at our docu-
mentation page (https://mdb.imfd.cl/doc/).

3.2 The Datasets

Users will be able to query and explore the following three knowl-
edge graphs. Please note that these endpoints are currently main-
tained under the assumption that they will receive a light number
of requests. Prior to the demo these will be set up in an environment
ready to accept and coordinate a larger load of requests.

BibKG. This is a bibliographic knowledge graph constructed
by integrating DBLP (https://dblp.org) and ArnetMiner (https://
www.aminer.org/). It contains full information about publications,
scientists and their fields, and is an ideal database to grasp the
concept of browsing. Figure 2 shows a possible pathway users may
engage with when browsing the graph: they would start searching
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Figure 3: Querying for the material that a certain member of

the Chilean Constitutional Convention voted in favor with

TelarKG, powered by MillenniumDB. Data is queried using a

property graph query language, and this text is also subject

to be queries for semantic similarity.

for a particular author, then browse their papers, and continue from
there. Users in this endpoint will be encouraged to run so-called
triangle queries, and other complex graph queries, so that they
can experience for themselves how our engine selects between
traditional and worst-case optimal joins for their query plans. The
endpoint is currently available at https://bibkg.imfd.cl/.

TelarKG. This is a political knowledge graph containing infor-
mation about the (first) recent Chilean constitutional process. This
knowledge graph contains information in different modalities: ev-
erything that the members of the constitutional convention stated
and voted for in plenary sessions, including both video and tran-
scripts of the sessions, plus their social network trace, and further
public social and media information that we retrieved during the
process. Figure 3 shows how users can query and interact with text
data, in this case looking for the text that a particular convention
member voted in favor of. Furthermore, users of this endpoint will
be encouraged to try out our semantic similarity functionalities,
allowing them to query, for example, for all videos in which a partic-
ular member of the convention spoke about a subject. The endpoint
is currently available at https://telarkg.imfd.cl/.

Wikidata. This is a knowledge graph natively available in RDF
format. We use this to showcase how MillenniumDB can handle
different data models and/or query languages (in this case RD-
F/SPARQL). This endpoint corresponds to a snapshot of the en-
tire Wikidata database [10], and is currently available at https:
//wikidata.imfd.cl/. Figure 4 shows the querying page of this end-
point, where nuances of SPARQL, such as prefixes, are provided to
help users write their queries. The SPARQL query in this figure is
a triangle pattern, which MilleniumDB evaluates efficiently using
worst-case optimal joins.
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