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ABSTRACT
Today’s space of graph database solutions is characterized by two
main technology stacks that have evolved separate from one an-
other: on one hand, there are systems that focus on supporting the
RDF family of standards; on the other hand, there is the Property
Graph category of systems. As a basis for bringing these stacks
together and, in particular, to facilitate data exchange between the
different types of systems, different direct mappings between the
underlying graph data models have been introduced in the litera-
ture. While fundamental properties are well-documented for most
of these mappings, the same cannot be said about the practical
implications of choosing one mapping over another. Our research
aims to contribute towards closing this gap. In this paper we re-
port on a preliminary study for which we have selected two direct
mappings from (Labeled) Property Graphs to RDF, where one of
them uses features of the RDF-star extension to RDF. We compare
these mappings in terms of the query performance achieved by two
popular commercial RDF stores, GraphDB and Stardog, in which
the converted data is imported. While we find that, for both of
these systems, none of the mappings is a clear winner in terms
of guaranteeing better query performance, we also identify types
of queries that are problematic for the systems when using one
mapping but not the other.
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1 INTRODUCTION
While the usage of graph database systems is becoming more wide-
spread and popular [9, 16, 24], users typically have to choose be-
tween two classes of such systems: On the one hand, there are sys-
tems such as Neo4j, TigerGraph, JanusGraph, RedisGraph, and SAP
HANA that support some form of so-called Property Graphs [20].
On the other hand, there are systems such as OpenLink’s Virtuoso,
Ontotext GraphDB, Stardog, and AllegroGraph that support the
Resource Description Framework (RDF) [21], which is a family of
standards developed by the World Wide Web Consortium (W3C).

A decision for a system of one of these two classes implies adopt-
ing the respective type of graph databases supported by this sys-
tem (i.e., Property Graphs or RDF graphs). Yet, users may still want
to incorporate graph data of the respective other type into their
applications without having to maintain two systems, or they may
want to leverage another system of the respective other class for
specific processing tasks. Examples for the latter may be to query
an RDF dataset using an expressive graph traversal language or
graph analytics algorithms available in a Property Graph system, or
to apply semantics-based reasoning to a Property Graph by using
an RDF system with the relevant reasoning capabilities, which are
typically not available in Property Graph systems.

Achieving interoperability and such a form of data exchange
between the two classes of systems has been a topic of research in
recent years [2]. One of the challenges in this context are differences
in the underlying data models [2, 17]. Property Graphs can be
characterized as directed multigraphs in which both the vertices
and the edges can be annotated with so-called properties in the
form of key-value pairs. Additionally, in many systems, the vertices
and the edges may have a label, in which case we speak of Labeled
Property Graphs (LPGs). Figure 1 illustrates such an LPG with two
nodes and two edges. An RDF graph, on the other hand, is a set of
triples of the form (subject, predicate, object)which can be considered
as edges, where the subject and the object are the vertices and the
predicate captures the type of such an edge (similar to an edge
label in an LPG); see Figure 2 for such a graph representation of
an RDF graph with five triples. Due to the set-based definition,
RDF graphs are not true multigraphs; that is, they cannot contain
multiple edges of the same type between the same vertices (which
is possible in LPGs). Another feature of LPGs for which there is
no direct counterpart in RDF graphs are edge properties. However,
RDF also has features that are not available natively in LPGs. For
instance, IRIs as globally unique identifiers [8] are a fundamental
building block of RDF triples, which is particularly relevant for data
exchange and data integration; in contrast, the building blocks of
LPGs (vertices, edges, labels, etc.) have an identity only within the
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Figure 1: Illustration of an LPG (adapted from [11]).

scope of the LPG that they belong to. Also, RDF has standardized
serialization formats whereas formats for LPGs are vendor specific.

A recent extension of RDF that aims to bridge the gap between
the two data models is called RDF-star [12, 14], which is already
supported by several RDF systems1, including GraphDB2, Stardog3,
Apache Jena4 and Oxigraph5, and is currently proposed for stan-
dardization by the W3C. The feature that RDF-star adds to RDF is
that it permits the subject and the object of a triple to be another
triple [12, 14]. This idea of embedding a triple into another one re-
sembles the notion of edge properties in LPGs and may be leveraged
for converting LPGs to be stored or processed by RDF systems.

Indeed, as a foundation of such conversions, several authors
have introduced direct mappings from LPGs to RDF-star [5, 11, 13].
Other authors have proposed direct mappings from LPGs to pure
RDF graphs [7, 18, 23] (i.e., without relying on the features of RDF-
star). Similarly, there exist direct mappings for the reverse direction,
from RDF to LPGs [3, 11, 22].

While defining such mappings is important as a foundation for
achieving interoperability of the different classes of graph database
systems, an understanding of the practical implications of these
mappings is equally important. To the best of our knowledge, such
an understanding is still largely missing in the literature. To begin
closing this gap, in this paper we report on a preliminary study that
compares two such mappings (one of them in two variations) from
LPGs to RDF for which we answer the following research question:
How does the choice of mapping affect the performance that RDF

systems achieve for queries over the resulting data?

The mappings that we have selected for this study are the di-
rect LPG-to-RDF-star mapping defined by Hartig [13] and a direct
LPG-to-RDF mapping described by Nguyen et al. [18]. The latter
transforms edges of the given LPG into vertices that, in the result-
ing RDF graphs, are captured as blank nodes; the properties of LPG
edges are then captured as RDF triples with these blank nodes as
subject. As an example, consider the LPG in Figure 1, which would
be mapped to the RDF graph in Figure 3. In contrast, Hartig’s map-
ping leverages RDF-star, which makes it possible to capture the
edges of an LPG as triples and the edge properties become nested
(RDF-star) triples with the triple for the corresponding edge as
their subject. In this case, the LPG in Figure 1 would be mapped
to an RDF-star graph with triples as illustrated in Figure 2, plus
a nested triple of the form (𝑡 , ns1:Certainty, 0.8) where 𝑡 is the
ns1:InfluencedBy triple in Figure 2.

1https://w3c.github.io/rdf-star/reports/index.html
2https://www.ontotext.com/fundamentals/what-is-rdf-star/
3https://www.stardog.com/blog/property-graphs-meet-stardog/
4https://jena.apache.org/documentation/rdf-star/
5https://github.com/oxigraph/oxigraph/releases/tag/v0.3.0

Figure 2: Illustration of an RDF graph with five triples.

To compare the impact that these mappings have on query per-
formance achieved by systems in which the resulting data is im-
ported, we have designed an experiment based on the Panama
Papers dataset, which is a real-world LPG. For this preliminary
study, we have selected two commercial RDF systems that support
RDF-star; namely, GraphDB and Stardog. Additionally, as a baseline,
we also include Neo4j as a native LPG system in our experiments.

The main findings of our study are the following: (1) there is no
clear best mapping in terms of query execution times; in some cases,
queries over the data resulting from the RDF-star-based mappings
perform better, and in others worse, compared with their equivalent
counterparts for the pure RDF representations; (2) Stardog produces
sub-optimal query plans for the RDF-star case if queries contain
nested triple patterns; and (3) for the RDF-based approach, using
separate IRIs for expressing node and edge labels reduces query
execution times, mainly because the queries become simpler.

Before we describe the experiment setup and the results in de-
tail (Sections 5–6), we define the mappings (Sections 2–3) and dis-
cuss how they differ in terms of the way queries over the resulting
data need to be formulated (Section 4). All material related to work
in this paper can be found in a corresponding github repository.6

Figure 3: RDF graph representation of the LPG of Figure 1
when using the RDF-based mapping approach 1.

2 PRELIMINARIES
As a basis for providing a more formal definition of the mappings
considered in this paper, we first need to define the relevant notions
of LPGs, RDF, and RDF-star.

Labeled Property Graphs (LPGs) have originally been defined
only informally [20] and their implementation in different systems
varies slightly in terms of features (e.g., some support multi-valued
properties or multiple labels, others not). As a consequence, formal
definitions that have appeared in the literature also differ slightly.
In this paper we adopt the following definition of Angles et al. [1],
which has also been used by Hartig for the LPG-to-RDF-star map-
ping [12] that we consider in this paper.

The definition assumes three infinite countable sets: Labels (la-
bels), Props (property names), and Values (property values).

Definition 2.1. An LPG is a tuple (𝑉 , 𝐸, 𝜌, 𝜆, 𝜎) where:
6https://github.com/LiUSemWeb/GRADES2022-paper
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• 𝑉 is a finite set of vertices (or nodes);
• 𝐸 is a finite set of edges such that 𝑉 ∩ 𝐸 = ∅;
• 𝜌 : 𝐸 → (𝑉 ×𝑉 ) is a total function;
• 𝜆 : (𝑉 ∪ 𝐸) → Labels is a total function;
• 𝜎 : (𝑉 ∪ 𝐸) × Props ↦→ Values is a partial function.

Example 2.2. The LPG illustrated in Figure 1 consists of the
following elements:

𝑉 = {𝑛1, 𝑛2}, 𝜆(𝑛1) = "Kubrick", 𝜆(𝑛2) = "Welles",

𝐸 = {𝑒1, 𝑒2}, 𝜆(𝑒1) = "Mentioned", 𝜆(𝑒2) = "InfluencedBy",

𝜌 (𝑒1) = (𝑛2, 𝑛1), 𝜌 (𝑒2) = (𝑛1, 𝑛2),
𝜎 (𝑛1, "Name") = "Stanley Kubrick", 𝜎 (𝑛1, "Birth") = 1928,

𝜎 (𝑛2, "Name") = "Orson Welles", 𝜎 (𝑒2, "Certainty") = 0.8.

RDF is a family of W3C standards with a well-defined data model
at its core. The main concepts of this data model are RDF triples
and RDF graphs [6]. To define these concepts formally we assume
three countably infinite and pairwise disjoint sets:I (IRIs),B (blank
nodes), and L (literals).

Definition 2.3. An RDF triple is a 3-tuple (𝑠, 𝑝, 𝑜) with 𝑠 ∈ (I∪B),
𝑝 ∈ I, and 𝑜 ∈ (I ∪ B ∪ L). An RDF graph is a finite set of such
triples.

All RDF-related examples in this paper, such as Figure 2, repre-
sent IRIs in a typical compact form [4]; we omit the corresponding
prefix declarations as they are not relevant here.

RDF-star extends RDF with the possibility to use triples as the
subject and the object of other triples [14]. The following definition
captures this idea formally.

Definition 2.4. An RDF-star triple is a 3-tuple that is defined
recursively as follows:

• every RDF triple is an RDF-star triple;
• if 𝑡 and 𝑡 ′ are RDF-star triples, 𝑠 ∈ (I ∪ B), 𝑝 ∈ I, and
𝑜 ∈ (I ∪ B ∪ L), then (𝑡, 𝑝, 𝑜), (𝑠, 𝑝, 𝑡), and (𝑡, 𝑝, 𝑡 ′) are
RDF-star triples, for which we say they are nested and, in the
context of such a nested triple, 𝑡 and 𝑡 ′are quoted triples [14].

An RDF-star graph is a finite set of RDF-star triples.

Notice that, by definition, every RDF triple is an RDF-star triple,
and every RDF graph is an RDF-star graph, but not vice versa. Notice
also that the definition allows for an arbitrarily deep nesting of
triples. However, for the LPG-to-RDF-star mapping that we consider
in this paper, only one level of nesting is needed.

Example 2.5. Let 𝑡 = (ns1:Kubrick, ns1:InfluencedBy, ns1:Welles)
be an ordinary RDF triple—which, of course, is also an RDF-star
triple—the triple (𝑡 , ns1:Certainty, 0.8) is a nested RDF-star triple with
𝑡 as a quoted triple in its subject position.

3 DEFINITION OF THE MAPPINGS
We are now ready to define the three mappings considered in our
study. The first two map LPGs to RDF graphs in two slightly differ-
ent ways, and the third maps to RDF-star graphs.

Algorithm 1 RDF-Based Approach 1

1: INPUT: an LPG 𝑔 = (𝑉 , 𝐸, 𝜌, 𝜆, 𝜎)
2: RESULT: an RDF graph 𝐺
3: 𝐺 ← ∅
4: for 𝑛 ∈ 𝑉 , with 𝜆(𝑛) = ℓ do
5: add

(
idm(𝑛), 𝑢label, lm(ℓ)

)
to 𝐺

6: for 𝑝 ∈ Props such that (𝑛, 𝑝) ∈ dom(𝜎) do
7: add

(
idm(𝑛), pnm(𝑝), pvm(𝑣)

)
to 𝐺 , with 𝜎 (𝑛, 𝑝)=𝑣

8: end for
9: end for
10: for 𝑒 ∈ 𝐸, with 𝜌 (𝑒) = (𝑛, 𝑛′) and 𝜆(𝑒) = ℓ do
11: add

(
idm(𝑛), 𝑢in, idm(𝑒)

)
to 𝐺

12: add
(
idm(𝑒), 𝑢out, idm(𝑛′)

)
to 𝐺

13: add
(
idm(𝑒), 𝑢label, lm(ℓ)

)
to 𝐺

14: for 𝑝 ∈ Props such that (𝑒, 𝑝) ∈ dom(𝜎) do
15: add

(
idm(𝑒), pnm(𝑝), pvm(𝑣)

)
to 𝐺 , with 𝜎 (𝑛, 𝑝)=𝑣

16: end for
17: end for
18: return 𝐺

3.1 RDF-Based Approach 1
The first mapping is adapted from Nguyen et al. who introduce

an approach to convert arbitrary LPGs into a specific class of LPGs
that, then, can be mapped directly into RDF [18]. The idea of this
approach is to transform every edge into a vertex which gets con-
nected to the two vertices incident to the transformed edge by
adding two new edges, labeled "in" and "out". Notice that these new
edges are the only types of edges after this transformation step,
and there are no more edge properties (they have become vertex
properties). In the RDF representation, all vertices—the original
ones and the ones created from the original edges—are mapped to
distinct blank nodes, and the new "in" and "out" edges become triples.
Each vertex property and vertex label is also captured as a triple.

While Nguyen et al. describe this mapping only informally, we
now define the mapping formally in terms of a conversion algo-
rithm (cf. Algorithm 1). That is, for every LPG 𝑔 = (𝑉 , 𝐸, 𝜌, 𝜆, 𝜎),
this algorithm returns the RDF graph that the LPG is mapped to
according to the mapping. For this definition we assume three spe-
cial IRIs, denoted in Algorithm 1 by 𝑢in, 𝑢out and 𝑢label, and we
assume the following four abstract mapping functions that define
how the individual LPG elements are mapped into the relevant RDF
terms (IRIs, blank nodes, and literals):
• pnm : Props→ I maps property names to IRIs;
• pvm : Values→ L maps property values to literals;
• lm : Labels→ L maps labels to literals;
• idm : 𝑉 ∪ 𝐸 → I ∪ B maps every vertex and edge of 𝑔 to
an IRI or a blank node, respectively.

How these mapping functions are actually implemented is ir-
relevant for the mapping and may differ for different application
scenarios. However, for the mapping to be information preserving
(i.e., lossless), these functions must be injective and the three special
IRIs (𝑢in, 𝑢out and 𝑢label) must not be in the image of pnm (i.e., no
property name should be mapped to them).

Given such four mapping functions and the three IRIs, in a first
phase (lines 4–9 in Algorithm 1), the algorithm iterates over the
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vertices to create triples that capture the vertex labels, where the
special IRI 𝑢label is used as the predicate of these triples (line 5).
Additionally, for every property of a vertex, a corresponding triple
is created (line 7). Thereafter, in a second phase (lines 10–18), the
edges are considered. Each edge is transformed into a vertex, rep-
resented by a blank node or IRI, with two triples that represent
the aforementioned new "in" and "out" edges, for which the IRIs 𝑢in
and 𝑢out are used as predicates, respectively. Furthermore, the edge
labels are captured as triples, using again the IRI 𝑢label (line 13),
and so are the edge properties (line 15).

Example 3.1. The result of applying Algorithm 1 to the LPG of
Example 2.2 (cf. Figure 1) is the set of RDF triples illustrated in
Figure 3 and serialized in RDF Turtle syntax [19] as follows:

_:x1 rdfs:label "Kubrick".

_:x1 ns1:Name "Stanley Kubrick".

_:x1 ns1:Birth 1928.

_:x2 rdfs:label "Welles".

_:x2 ns1:Name "Orson Welles".

_:x1 ns1:InRelationTo _:x3.

_:x3 ns1:PointsTo _:x2.

_:x3 rdfs:label "InfluencedBy".

_:x3 ns1:Certainty 0.8.

_:x2 ns1:InRelationTo _:x4.

_:x4 ns1:PointsTo _:x1.

_:x4 rdfs:label "Mentioned".

In this serialization, _:x1, _:x2, _:x3 and _:x4 represent the blank nodes
assigned to the vertices 𝑛1 and 𝑛2 and to the edges 𝑒1 and 𝑒2 of the
LPG, respectively. For the abstract special IRIs 𝑢in, 𝑢out and 𝑢label,
the example uses the concrete IRIs ns1:InRelationTo, ns1:PointsTo and
rdfs:label, respectively.

3.2 RDF-Based Approach 2
The second LPG-to-RDF mapping is a variation of the first one,
with the following difference. Instead of using the same IRI 𝑢label as
predicate of the triples that capture vertex labels and the triples that
capture edge labels, two separate IRIs are used: 𝑢nlabel for vertexes
and𝑢elabel for edges. Hence, the algorithm that defines this mapping
is as Algorithm 1 with lines 5 and 13 changed as follows.

5: add
(
idm(𝑛), 𝑢nlabel, lm(ℓ)

)
to 𝐺

13: add
(
idm(𝑒), 𝑢elabel, lm(ℓ)

)
to 𝐺

Example 3.2. The set of RDF triples resulting from applying
the second LPG-to-RDF mapping to the LPG from Example 2.2 is
basically the same as in Example 3.1, except for the triples about la-
bels. For instance, (_:x1, rdfs:label, "Kubrick") becomes (_:x1, node:label,
"Kubrick"), and (_:x3, rdfs:label, "InfluencedBy") becomes (_:x3, edge:label,
"InfluencedBy"). The complete result in RDF Turtle syntax:

_:x1 node:label "Kubrick".

_:x1 ns1:Name "Stanley Kubrick".

_:x1 ns1:Birth 1928.

_:x2 node:label "Welles".

_:x2 ns1:Name "Orson Welles".

_:x1 ns1:InRelationTo _:x3.

_:x3 ns1:PointsTo _:x2.

_:x3 edge:label "InfluencedBy".

_:x3 ns1:Certainty 0.8.

_:x2 ns1:InRelationTo _:x4.

_:x4 ns1:PointsTo _:x1.

_:x4 edge:label "Mentioned".

Algorithm 2 RDF-star-Based Approach

1: INPUT: an LPG 𝑔 = (𝑉 , 𝐸, 𝜌, 𝜆, 𝜎)
2: RESULT: an RDF-star graph 𝐺
3: 𝐺 ← ∅
4: for 𝑛 ∈ 𝑉 , with 𝜆(𝑛) = ℓ do
5: add

(
idm(𝑛), 𝑢label, lm(ℓ)

)
to 𝐺

6: for 𝑝 ∈ Props such that (𝑛, 𝑝) ∈ dom(𝜎) do
7: add

(
idm(𝑛), pnm(𝑝), pvm(𝑣)

)
to 𝐺 , with 𝜎 (𝑛, 𝑝)=𝑣

8: end for
9: end for
10: for 𝑒 ∈ 𝐸, with 𝜌 (𝑒) = (𝑛, 𝑛′) and 𝜆(𝑒) = ℓ do
11: 𝑡 ←

(
idm(𝑛), elm(ℓ), idm(𝑛′)

)
12: add 𝑡 to 𝐺
13: for 𝑝 ∈ Props such that (𝑒, 𝑝) ∈ dom(𝜎) do
14: add

(
𝑡, pnm(𝑝), pvm(𝑣)

)
to 𝐺 , with 𝜎 (𝑛, 𝑝)=𝑣

15: end for
16: end for

3.3 RDF-star-Based Approach
As defined by Hartig, this mapping transforms LPGs into RDF-star
graphs [13]. For vertices, this approach works exactly as the RDF-
based approach 1. Each LPG edge, however, is captured as a triple;
the predicate of this triple is an IRI that depends on the label of
the edge. The edge properties are then captured as nested triples in
which the subject is the triple that captures the edge.

For the formal definition of this mapping, we need an additional
abstract mapping function (in addition to pnm, pvm, lm and idm):
• elm : Labels→ I that maps (edge) labels to IRIs

Then, Algorithm 2 defines the RDF-star-based mapping. The
algorithm has two phases: The first phase (lines 4–9) covers the
vertices and is equivalent to the first phase of Algorithm 1. The
second phase starts by mapping each edge to its corresponding RDF
triple (lines 11 and 12); then, for each property defined for the edge,
the algorithm adds a nested triple containing the triple representing
the edge as a quoted triple in the subject, and the property and
value mappings in the predicate and object positions (line 14).

It should be noted that RDF-star cannot capture multiple edges
with the same label that connect the same pair of vertices. In this
case, the mapping as defined by Algorithm 2 collapses all such
multiple edges into just one.

Example 3.3. The result of applying Algorithm 2 to the LPG of
Example 2.2 is the following set of RDF-star triples, serialized in
Turtle-star format [14], which is an RDF-star extension of Turtle.

_:x1 rdfs:label "Kubrick".

_:x1 ns1:Name "Stanley Kubrick".

_:x1 ns1:Birth 1928.

_:x2 rdfs:label "Welles".

_:x2 ns1:Name "Orson Welles".

_:x2 ns1:Mentioned _:x1.

_:x1 ns1:InfluencedBy _:x2.

<<_:x1 ns1:InfluencedBy _:x2>> ns1:Certainty 0.8.

The last line in this serialization represents a nested triple that
captures the certainty property of edge 𝑒2 of the LPG. Notice that this
example also illustrates that, in terms of translating the vertices of
an LPG, the RDF-star-based mapping and the RDF-based approach 1
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are equivalent (the first five triples in this example are exactly the
same as in Example 3.1). For edges, on the other hand, the mappings
are different; by using nested triples, the RDF-star-based mapping
does not require the extra blank nodes (_:x3 and _:x4 in Examples 3.1
and 3.2) and the ns1:InRelationTo and ns1:PointsTo triples with which
the RDF-based mappings capture the edges of the translated LPG.

4 QUERYING THE CONVERTED DATA
While the RDF and RDF-star graphs resulting from the mappings
can be queried using the RDF query language SPARQL [10] and its
RDF-star-related extension SPARQL-star [14], queries may need to
be formulated differently, depending on which of the three map-
pings is used. In this section, we identify and discuss key differences
that need to be considered in this context. To this end, we consider
several Cypher queries for LPGs and show how to reformulate them
as semantically-equivalent SPARQL and SPARQL-star queries for
the RDF and RDF-star graphs obtained from mapping the LPG.

To mimic a Cypher query that matches all vertices and edges in
an LPG (i.e., MATCH (n1)-[e]->(n2) RETURN *), the following SPARQL
query may be used for the RDF graphs produced by either of the
two RDF-based approaches:

SELECT * WHERE{ ?n1 𝑢in ?e . ?e 𝑢out ?n2 . }

For the RDF-star-based approach, in contrast, we only need a
single triple pattern but we have to add a FILTER to avoid obtaining
property names and values in addition to the vertices and edges:

SELECT * WHERE{ ?n1 ?e ?n2 . FILTER (! IsLiteral (?n2))}

The difference between the two RDF-based approaches becomes
relevant when querying for vertex labels: To mimic the Cypher
query MATCH (n) RETURN labels(n) AS l, for the RDF-based approach 1,
we use the following SPARQL query:

SELECT ?l WHERE{ ?n 𝑢label ?l .

FILTER NOT EXISTS { ?n 𝑢in ?e . } }

Here, we need to use FILTER NOT EXISTS to obtain only vertex
labels and no edge labels. Notice that the filter could contain the
triple pattern (?e, 𝑢out, ?n) and achieve the same effect.

For the RDF-based approach 2, we can, instead, use:
SELECT ?l WHERE{ ?n 𝑢nlabel ?l . }

Similarly, for the RDF-star-based approach, we can use the latter
query after replacing 𝑢nlabel by 𝑢label.

Cypher produces null values when a property is not defined on a
given vertex or edge. This behavior can be replicated in SPARQL
by using OPTIONAL patterns. As an example, consider the Cypher
query MATCH (n) RETURN n.height AS h, which can be reformulated in
SPARQL as follows, for the RDF-based approaches:
SELECT ?h WHERE{ OPTIONAL {?n pnm(height) ?h.

FILTER NOT EXISTS {?n 𝑢in ?e}}}

In this case, FILTER NOT EXISTS is used to filter out edges that have
a height property. For the RDF-star-based approach, the query has
to be formulated as follows:
SELECT ?h WHERE{ OPTIONAL{ ?n pnm(height) ?h.

FILTER ! IsTriple (?n) } }

The built-in function IsTriple in this query is a SPARQL-star-specific
feature that we use here in the FILTER to keep only the bindings for
variable ?n that are not quoted triples (which the RDF-star-based
mapping approach creates for edges).

Finally, we consider queries that retrieve edge properties such as
the Cypher query MATCH ()-[e]->() RETURN e.weight AS w . For both
RDF-based approaches, the SPARQL equivalent is:
SELECT ?w WHERE{ OPTIONAL {?e pnm(weight) ?w.

FILTER EXISTS {?e 𝑢out ?n}} }

Here, the purpose of the FILTER EXISTS pattern is to keep only the
edges. For the RDF-star-based approach we can use the following
SPARQL-star query:
SELECT ?w WHERE{OPTIONAL{ <<?n1 ?e ?n2>> pnm(weight) ?w}}

To conclude, the examples in this section illustrate that the
queries for the data resulting from the three mappings need to
be different; for some cases, even different SPARQL operators need
to be used in these queries. These differences may have an effect
on the performance that RDF systems achieve for such queries

5 EXPERIMENT DESIGN AND SETUP
The goal of our experiment is to compare the three mappings
in terms of the query performance that RDF systems achieve for
queries over the particular form of RDF/RDF-star graphs produced
by the mappings. To this end, we have selected a real-world LPG,
used the three mappings to convert this LPG into two RDF graphs
and one RDF-star graph, and then loaded these three graphs into
both GraphDB (v.9.10.0) and Stardog (v.7.9.0). These two systems
are commercial RDF stores that already support RDF-star and
SPARQL-star. Additionally, we have also loaded the original LPG
into Neo4j (community edition 4.3.7). To query the data we have
created a collection of twelve benchmark queries (see below), where
each query is defined in four semantically equivalent versions: a
Cypher version for the LPG, two SPARQL versions for the two RDF
representations, and a SPARQL-star version for the RDF-star-based
approach. For each graph representation in each system, we have
executed each of the corresponding twelve queries ten times and,
for each such execution, we have measured the execution time. We
shall report on the averages of these ten measurements.

In terms of technical setup, we have performed the experiment on
a server machine with two 8-core Intel Xeon E5-2667 v3@3.20GHz
CPUs, 256 GB of RAM, and a 1 TB HDD. The machine runs a 64-bit
Debian GNU/Linux 10 server operation system. On thismachine, we
use Docker (v.9.03.6) to run all systems of the experiment setup in a
separate, virtual environment (i.e., Neo4j, GraphDB, and Stardog).

The remainder of this section focuses on the dataset and the
queries, and Section 6 presents the experiment results.

5.1 Dataset
For the experiment we use a real-world LPG with data about the
Panama Papers.7 What makes this dataset interesting for our ex-
periment is that it was created natively as an LPG and it uses all
features of LPGs; namely, it has multiple types of vertices and edges,
with multiple types of vertex and edge properties, as well as vertex
and edge labels. Figure 4 depicts the schema of this LPG. There are
four types of vertices: officer, entity, address, and intermediary, and
three types of edges: officer_of (to connect each officer to either an
entity, intermediary, or another officer), intermediary_of (to connect
an intermediary to an entity), and registered_address (to connect each

7https://offshoreleaks.icij.org/pages/database
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Figure 4: Schema of the Panama Papers LPG.

officer and entity to an address). Additionally, vertices and edges have
properties. While, for vertices, the types of properties vary depend-
ing on the type of vertex, the edges all have properties of the same
types, namely: start_date, end_date, sourceID, link, and valid_until.

In terms of size, the original LPG version of this dataset consists
of 559,600 vertices and 674,102 edges. When converting it using any
of the two RDF-based approaches, we obtain an RDF graph consist-
ing of 9,678,501 triples. In contrast, applying the RDF-star-based
mapping results in an RDF-star graph with 8,261,110 triples. We
have made available these resulting RDF and RDF-star representa-
tions of the dataset for other researchers and future experiments.8

5.2 Benchmark Queries
This section introduces our twelve benchmark queries; we describe
what they are intended for and what features of LPGs they access.
Given that the RDF-star-based approach collapses edges with the
same label between a given pair of vertices, we chose queries that
do not traverse such multi-edges in order to have the same num-
ber of results when evaluating the queries in the different graph
representations. The actual Cypher, SPARQL, and SPARQL-star rep-
resentations of these queries can be found in the aforementioned
github repository for this paper.

Q1 obtains IDs of vertices with value “XU JIE” on property name.

Q2 obtains information of vertices that have name “EL PORTADOR”.
The main aim of this query is to measure the influence of the
FILTER NOT EXISTS pattern on the execution time on the RDF-
based approach 1 when the number of results is large.

Q3 retrieves the distinct vertex labels of the dataset. The main
purpose of this query is to observe how the execution time may
differ when it comes to scanning the whole graph.

Q4 obtains all the distinct edge labels.

Q5 is the first to use path patterns. In this case, the pattern searches
for vertices that target a vertex with name “ORION HOUSE SER-
VICES (HK) LIMITED”, through an intermediary_of edge.

Q6 obtains the vertex that have a relationship with a set of ver-
tices that have name “BEARER” or “The Bearer”. The main goal of
the query is to see how the approaches perform in terms of the
execution time when querying edge properties.

Q7 obtains vertex and edge properties, such that the source vertex
has name “THE BEARER”, the edge has property end-datewith value
“11-APR-2014” and the target vertex has property status with value
“active”, or the edge has property end-datewith value “29-DEC-2009”
8https://doi.org/10.5281/zenodo.6524085

and the target vertex has property status with value “defaulted”.
The aim of this query is to measure the impact of filtering by edge
property values.

Q8 obtains labels and properties of vertices and edges that partici-
pate in registered_address relationships.

Q9 obtains vertex and edge properties, such that a given vertex has
two registered_address relationships with two different vertices.

Q10 retrieves edge properties of edges of type registered_address
that connect an officer vertex and an entity vertex to a same target
vertex. The main aim of the query is to observe how the increased
number of triple patterns in a query would affect its performance.

Q11 obtains edge properties of edges that connect an intermediary
vertex to an entity vertex that is connected to the same address vertex
as an officer vertex. In contrast to Q9 and Q10, the edge labels in this
query are not specified. Therefore, the primary goal of this query is
to see how the identification of the edge affects its execution time.

Q12 obtains various properties of vertices and edges that participate
in a given path, where each vertex has a given label and each edge
has a given type. The aim of this query is to produce rather large
BGPs and measure their execution time.

6 EXPERIMENT RESULTS
Figure 5 presents the average execution time of the benchmark
queries over the RDF/RDF-star graphs produced by the three de-
scribed approaches on GraphDB and Stardog, compared with their
equivalent version in Neo4j. The query execution times on Neo4j,
GraphDB, and Stardog are depicted in dark gray, white, and light
gray bars, respectively. Moreover, the bars with the dotted pattern
represent the queries for the RDF-based approach 1, the slashed
pattern is used for the RDF-based approach 2, and the circle pattern
for the RDF-star-based approach. The vertical axis has a logarithmic
scale. In general, it can be seen that GraphDB outperforms both
Stardog and Neo4j for the majority of the queries. Neo4j performs
better than GraphDB and Stardog in some specific cases. Stardog
performs best on queries retrieving vertex and edge labels.

In Q1, Q2 and Q3, which aim to obtain vertex properties and
vertex labels, the queries over the data from the first RDF-based
approach take longer than the queries for RDF-based approach 2,
both in GraphDB and Stardog. This behavior is expected since
these three queries for the RDF-based approach 1 require a FILTER
NOT EXISTS operation, which is very costly. However, this oper-
ation does not have a significant effect on the execution time of
Q1 because of the low amount of matches for the triple pattern (?n,
ns1:name, ‘XU JIE’) (6 results) versus the 9,325 results of (?n, ns1:name,
‘EL PORTADOR’) in Q2, and all nodes in Q3. For Q2, Q3 and Q4, we
see that Stardog performs significantly better than GraphDB in the
RDF-based approach 2 and the RDF-star approach. It can be seen in
the query plans that Stardog has a better cardinality estimation.9
Also, Stardog scans a POC index, thus not producing bindings for
the variable in the subject of the triple pattern.

Q4, that aims to get all distinct edge labels, follows a similar
pattern, being the RDF-based approach 2 the one that performs
best, which is expected since the query uses just one triple pattern,

9The query plans for all the queries can be found in the github repository of this paper.
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Figure 5: Execution time comparison of queries over data produced based on the three mappings, as achieved by GraphDB and
by Stardog; execution times of corresponding Cypher queries over the original LPG in Neo4j are included as a baseline.

versus the 2 that the RDF-based approach 1 uses. The RDF-star
approach uses a FILTER. Stardog presents the best performance.

Q5 is the first of the queries to include graph patterns to be
matched over the data. In this case, obtaining property values of
vertices connected to a given vertex. Here the three approaches be-
have similarly in terms of execution time, across both systems. This
behavior makes sense, because the queries for the three approaches
are only basic graph patterns and one OPTIONAL pattern.

Edge properties are the main focus of Q6–Q12. As it can be seen,
queries for the RDF-based approaches behave similarly. It is an
expected occurrence since both approaches have almost the same
SPARQL query patterns differing only in some IRIs for labels. On the
other hand, the queries for the RDF-star-based approach in Stardog
behave inadequately when compared to GraphDB. In GraphDB,
queries for the RDF-star-based approach are sometimes faster and
sometimes slower than those for the RDF-based approaches.

In Q6, GraphDB presents the best performance across all map-
ping approaches, since it resolves the OPTIONAL patterns with less
operations than Stardog. For the RDF-star-based approach, Stardog
has a poor performance, presenting an execution time two orders
of magnitude larger than the other alternatives in the same system.

Q7 and Q11 are queries containing nested triple patters with
three variables in the RDF-star approach. In Stardog, the queries for
the RDF-star-based approach take a significantly longer time which
is not the case in GraphDB. However, in GraphDB they take a longer
time than the other two RDF-based approaches. This performance
in Stardog can be explained by having a look at the query plans
and see how the system deals with the evaluation of nested triple
patterns all in variables. For instance, for Q7 in the RDF-star based
approach, Stardog first evaluates the embedded triple pattern that
has three variables (?n1, ?r1, ?n2) (which matches with the entire RDF-
star graph), then binds each solution mapping to a fresh variable,
and then sorts the values and looks for matches in the edge property.
This plan is very costly and most likely the reason for taking a long
execution time. On the other hand, GraphDB first matches the edge
property, and then performs a joinwith the rest of the triple patterns.
Other queries with nested triple patterns, like Q9 and Q12, do not

contain embedded triple patterns with three variables, however
RDF-star-based queries tend to take longer than the RDF-based
ones in Stardog, whereas in GraphDB, RDF-star queries perform
best than the RDF-based ones in Q9, Q10 and Q12.

Q8 and Q10 present similar structures, but in different sizes. Both
queries have a basic graph pattern and then obtain edge properties.
However, this difference in query size produces a large variance in
query execution time. In GraphDB, it takes three orders of magni-
tude more time to evaluate Q8 than Q10 for all three approaches.
Stardog presents a similar performance on both queries, since it
is mainly determined by the evaluation of the OPTIONAL patterns.
Neo4j presents a lower execution time for Q10 that for Q8.

7 RELATEDWORK
Existing works related to ours can be grouped into work on map-
pings between LPGs and RDF, and on studies that compare query
performance over LPGs and RDF graphs.

In terms of mappings, there are several approaches to map RDF
graphs to LPGs. For instance, Tomaszuk has introduced a serial-
ization format called YARS which serializes RDF data in property
graph style by using three declaration directives: one for prefixes,
one for vertices, and one for edges [22]. Angles et al. have intro-
duced a semantic interoperability approach between RDF and LPGs
which includes three different mappings: simple database mapping,
generic database mapping, and complete database mapping [3].

More relevant for our work in this paper, however, are mappings
in the reverse direction, from LPGs to RDF or to RDF-star graphs.
While we have already introduced the approaches of Nguyen et
al. [18] and Hartig [12], there exist several other proposals, which
we plan to experiment with as part of our future work.

In particular, Tomaszuk et al. have suggested a mapping that
describes LPGs in RDF by using an ontology named PGO [23]. The
ontology defines five classes for graph elements (e.g., pgo:Node),
and for making the connections between instances of these classes,
eight properties are defined (e.g., pgo:hasEdge). The number of triples
for mapping a vertex, edge, and properties is equal to two, four,
and four, respectively. Due to the large number of triples produced
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by this mapping, querying might be challenging. Furthermore, a
larger space for managing the data is required.

Das et al. study LPG-to-RDF transformation techniques for three
methods of translating LPGs to RDF: reification based (RF), sub-
property based (SP), and named graph based (NG) [7]. The number
of triples produced for each edge in RF, SP, and NG is equal to four,
three, and one, respectively. A large number of joins leads to chal-
lenges in querying the data. Moreover, for RDF stores that do not
support named graphs, the NG approach can not be implemented.

Finally, Bruyat et al. introduce a tool for converting an LPG into
an RDF-star graph based on a direct mapping that is encoded in
the tool [5]. This mapping, however, is essentially the same as the
one defined by Hartig [12] which we consider in this paper.

In terms of experimentation to compare query performance over
LPGs and RDF graphs, Hernández et al. transform Wikidata to a
relational database, to an LPG, and to four forms of RDF reifica-
tion [15]. The main goal of the work is testing the engines from
different families of data models in terms of query execution time.
Four systems—Neo4j, Blazegraph, Virtuoso, and PostgreSQL–are
used in the experiments. The authors have performed two types
of experiments: atomic-lookup and basic graph pattern (BGPs). In
the former one, Neo4j and Blazegraph behave the worst and even
time out in some of the queries, and PostgreSQL performs the best.
Whereas with BGPs, Virtuoso performs the best. Moreover, among
four different RDF reification representing Wikidata, Named Graph
and Standard Reification perform the best.

Das et al. [7], in their aforementioned study of three methods
for translating LPGs to RDF, consider four types of queries, namely:
node-centric, edge-centric, aggregate, and graph traversal queries.
The named graph based method performs the best in the queries
accessing edge properties because of using less joins due to the
fewer number of triples needed for mapping an edge. A major
difference between their work and ours is that we use a real world
LPG dataset while they generate an LPG from a social network
with only one type of relationships and no actual edge properties.

Similarly, instead of using graph data that has actually been
created as an LPG, Nguyen et al. (from which we have adopted
the RDF-based approaches) have used RDF data when experiment-
ing with their model for representing LPGs in an RDF-compatible
way [18]. Then, they have used a SPARQL-to-Gremlin plugin to
query the generated LPG, instead of querying the RDF data directly.

8 CONCLUSIONS
In this paper we present results on an experiment comparing query
performance over RDF and RDF-star graphs produced by applying
different LPGmapping approaches.We define 12 benchmark queries
that are executed over the different graphs by two RDF systems,
GraphDB and Stardog, while we use corresponding Cypher queries
over the original LPG loaded into Neo4j as a baseline.

From our experiments, we conclude that none of the three map-
ping approaches is a clear winner: Cypher queries are the fastest
for three of the twelve cases, SPARQL queries for the RDF-based
approaches 1 and 2 for one and for three cases, respectively, and
the queries for the RDF-star-based approach for five cases.

Nonetheless, we can draw two main conclusions: (1) introducing
two separate IRIs for vertex and edge labels tends to perform better

than using a single IRI because it results in simpler queries (less
triple patterns or FILTERs); and (2) Stardog produces sub-optimal
query plans for SPARQL-star queries that contain nested triple
patterns, which causes high execution times, whereas GraphDB
produces better plans, which is reflected in lower execution times. It
is worth noting that Neo4j is also not a clear winner in this scenario;
it tends to perform better for queries that have longer and more
complex path patterns.

As part of our future work, we plan to expand our experiment by
considering additional mapping approaches, datasets, and RDF sys-
tems. Additionally, we plan a similar study for the direct mappings
in the reverse direction (i.e., RDF or RDF-star to LPG).
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