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ABSTRACT Property graphs are popular in both industry and academia due to their versatility in modeling
complex data across diverse application domains, ranging from social networks to knowledge graphs. Despite
their popularity, there is no standardized data format for storing and exchanging property graphs. This paper
introduces PGDF, a text-based data format for property graphs, designed to be both simple and flexible, while
remaining expressive and efficient. The simplicity of PGDF comes from its tabular-like structure, where each
line in a PGDF file contains a single schema or data declaration. PGDF offers great flexibility by allowing
schema and data declarations to be combined in any order. This means that nodes and edges can each have
their own distinct properties, providing greater adaptability and customization. The expressiveness of PGDF
is defined by its ability to represent a wide range of property graph features. In this article, we describe the
syntax and semantics of PGDF, outline methods for converting property graphs stored in multiple CSV files
to PGDF and other graph data formats, and present an experimental evaluation comparing PGDF, YARS-PG,
GraphML, and JSON-Neo4j. The experiments show that PGDF enables the production of smaller files more

quickly compared to other graph data formats.

INDEX TERMS Graph Databases, Property Graphs, Graph Data Formats, PGDF

I. INTRODUCTION

N recent years, property graphs have emerged as a novel

paradigm for representing and analyzing complex rela-
tionships within data. Property graphs, which consist of
nodes, edges and properties [1], have gained immense promi-
nence not only in academic research [2], [3], [4] but also in
industry [5], [6]. Their ability to model intricate connections
and attributes in a wide range of applications, from social
networks [7], [8] to knowledge graphs [9], has made them an
indispensable tool for data management [10], analytics [11],
and knowledge discovery [12].

As the demand for graph data utilization continues to
grow, a noteworthy challenge has emerged: the lack of
a standardized and comprehensive data format for storing
and exchanging property graphs. Traditional alternatives like
CSV (Comma-Separated Values) or even the more structured
GraphSON and GraphML formats [13], while suitable for
certain use cases, can fall short in capturing the rich and nu-
anced features of property graphs [1]; for instance, by not ex-
plicitly allowing multi-valued properties (e.g., GraphML [13]
is XML-based, and even though XML allows repeating tags
to encode multiple values for a property, GraphML does not
support this as the property names are encoded in the tag
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attribute k ey, which must be unique within an edge or node).

In response to the aforementioned issues, we have created
PGDF, a data format for property graphs which was designed
to satisfy the following characteristics: a) Simplicity: PGDF
follows an intuitive tabular-like structure such that each line
in a PGDF file contains a single schema or data declaration. b)
Flexibility: the schema and data declarations can be combined
in any order, allowing nodes and edges with distinct prop-
erties. ¢) Expressiveness: PGDF is able to represent a wide
variety of property graph features such as multiple labels,
multi-valued properties and edge IDs.

Moreover, PGDF offers the following advantages: PGDF
has the potential to be generic, unlike JSON-based serializa-
tions which are vendor-specific (i.e., a JSON file obtained
with Neo4j may not be imported directly in other systems);
PGDF can be used to serialize property graphs obtained from
popular graph database systems, including Neo4j, Amazon
Neptune and TigerGraph; a property graph serialized as mul-
tiple CSV files can be stored in a single PGDF file; and,
PGDF produces smaller files than other serializations such
as GraphSON, GraphML and YARS-PG.

In this article we introduce PGDF, study transformation
methods, and present an empirical evaluation. This paper is
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(1001) WORKS_ON

name: Project B
date: 2023-07-01
team: ["John", "Ana']

name: John
age: 30
position: Engineer

(1)
PERSON
EMPLOYEE

date: 2023-08-20
amount: 5000

@ (1002) CONTRACT

CLIENT

name: Charles
age: 40
interests: ["Technology”, "Travel’]

FIGURE 1: Example of a property graph.

organized as follows: Section II contains a formal definition
of the property graph data model; Section III includes a
review of current data formats for property graphs; Section IV
contains the syntax and semantics of PGDF, and an algorithm
for producing a PGDF file; Section V includes a method to
convert property graphs from CSV to PGDF, including a use-
case example based on the LDBC Social Network Benchmark
(LDBC-SNB); Section VI explain methods to convert a CSV-
based property graph to other graph formats (i.e. YARS-PG,
GraphML, JSON); Section VII presents evidence that PGDF
is able to produce smaller files faster than other data formats.

Il. PROPERTY GRAPHS
A property graph is a directed multi-graph where the nodes
and the edges can have labels and properties (i.e. name-value
pairs). Figure 1 shows an example of property graph com-
posed of three nodes and two edges. Node 1 has two labels
(PERSON and EMPLOYEE) and three single-value properties
(name, age, and position). Node 2 has label PROJECT,
two single-valued properties (name and date) and a multi-
valued property (team). Node 3 has label CLTIENT, two single-
valued properties (name and age), and a multi-valued prop-
erty (interests). In addition, there are two relationships
between the nodes: edge 1001 with label WorRKS_ON, and edge
1002 with label coNTRACT. Both edges also have properties.
We extend the property graph definition presented in [1], to
include node and edge identifiers, as well as directionality for
edges. For this, we assume the following countably infinite
sets: L (node and edge labels), Props (property names),
Vals (property values), and VID and EID (nodes and edge
identifiers).
Definition 1: A Property Graph G is a six-tuple
(V,E,p, A, 0,6), where:

e V C VID is a finite set of nodes;

e E C EID is a finite set of edges;

e p: E — V x V is a function that associates each edge
in E with a pair of nodes, both in V;

e \:VUE — 2Fis a function that associates each node
and edge with a set (which may be empty) of labels;

e 0 : (VUE) x Props + 2V is a partial function
that connects nodes and edges with property names and
property values;

e d : E — {—,+,¢} is a function that assigns a
direction to each edge.

Hence, the property graph shown in Figure 1 can be defined
as G = (V,E, p, A\, 0,0) where:
o« V={1,23},
o E ={1001,1002},
e p=1{1001 — (1,2),1002 — (2,3)},
e A= {1— {PERSON,EMPLOYEE},
2 — {PROJECT},
3 — {CLIENT},
1001 — {WORKS_ON},
1002 — {CONTRACT}},
e 0 ={(1,name) = {John}, (1,age) — {30},
1,position) — {Engineer},
2,name) — {Project B},
2,date) — {23/07/01},
2,team) — {John,Ana},
3,name) — {Charles}, (3,age) — {40},
3, interests) — {Technology, Travel},
1001, hours) — {30},
1002, date) — {2023/08/20},

(1002, amount) — {5000} }; and
o 0 is such that §(1001) =—, and §(1002) =—

Another concept that shall become important later on is the

one of the schema for nodes and edges. A property graph
schema can be understood in many ways, for instance, as
rules defining which kinds of nodes can have which properties
and should be connected by a given set of edges [4]. For the
purposes of our work, we define the schema in a per node
and per edge basis by simply saying that the schema of a node
(resp. edge) is the set of properties defined for said node (resp.
edge). We define this notion formally as follows.
Definition 2 (Schemas): Let G = (V,E p,\,0,0) be a
property graph. The schema of a node n € V is the set of
property names sch(n) = {p | (n,p) € dom(o)}. Similarly,
the schema of an edge ¢ € E is the set of property names
sch(e) = {p | (e,p) € dom(c)}. We denote by schpoge(G)
the set of all different node schemas in G (i.e., schpode(G) =
{sch(n) | n € V}); and by schegge (G) the set of all different
edge schemas in G (i.e., SChedge (G) = {sch(e) | e € E}).

For example, the schema of node 1 in Figure 1 is sch(1) =
{name, age, position}, and the schema of the edge 1001 is
sch(1001) = {hours}.

(
(
(
(
(
(
(
(

Ill. GRAPH DATA FORMATS
There are several data formats for serializing graphs, but just
some of them support property graphs. In this section we
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review the syntax and semantics of GraphML, YARS-PG, PG
Format, JSON-Neo4j, and GraphSON Tinkerpop.

A. GRAPHML

The Graph Markup Language (GraphML) [13] is a file format
to store graphs as XML. GraphML has two sections. The first
section is the definition of the property names and datatypes
of edges and nodes. Before defining the properties of a node,
a special property labelV can be used to store node labels.
Then, all the node property names are defined. Similarly, the
property labelE can be defined for edge labels followed for
all edge property names. In the second section, each node is
defined within a <node> tag containing its labels and prop-
erty values; and then each edge is similarly described within
an <edge> tag. Properties are defined with <data> tags
specifying the name in the key attribute. Multiple <data>
tags with the same key value are not permitted for a node or
edge in order to support multi-valued properties. In Figure 2,
we present a GraphML file that serializes the data of the
property graph shown in Figure 1, where multi-label and
multi-valued properties are truncated.

B. YARS-PG

YARS-PG is a data format designed to support the publication
and exchange of property graphs. There are two versions of
YARS-PG which are presented in [14] and [15] respectively.
In this article we consider the first version because its syntax
is simpler than the one defined in the second version.

In a YARS-PG file, declarations for nodes must be defined
first, and then followed by declarations for edges. A node dec-
laration begins with the node ID, followed by square brackets
(1) that enclose a list of labels for that node separated by
colons (:), and ends with curly braces ({}) that contain
key/value pairs representing the property names and values of
the node. An edge declaration begins with the ID of the source
node, enclosed in parentheses. This is followed by a hyphen
(-). Within square brackets, one label for the edge is placed,
followed by a space, and then the list of property names and
values enclosed in curly braces (similar to the case of nodes).
Afterwards, an ASCII arrow is appended (—>). Finally, the ID
of the target node is added in parentheses.

In Figure 3, we present the YARS-PG declarations for
the property graph shown in Figure 1, where multi-valued
properties are truncated, as YARS-PG does not explicitly
provide support for them (e.g., by defining arrays). Note that
YARS-PG supports only one label per edge.

C. PG FORMAT

PG Format [16] is an exchange format similar to YARS-
PG, but with a simpler syntax and allowing multi-valued
properties by repeating the key. Each node and each edge
are on their own line, with space separated fields for IDs,
labels and property/value pairs. In Figure 4 we present the
serialization of the property graph shown in Figure 1, where
it can be noted that edge identifiers are lost.

VOLUME 11, 2023

<?xml version="1.0" encoding="utf-8"?>
<GraphML>
<key id="labelV" for="node"
attr.name="labelV" attr.type="string"/>
<key id="name" for="node"
attr.name="name" attr.type="string"/>
<key id="age" for="node" attr.name="age"
attr.type="integer"/>
<key id="team" for="node" attr.name="team"
attr.type="string"/>
<key id="position" for="node" attr.name="position"
attr.type="string"/>
<key id="interests" for="node" attr.name="interests"
attr.type="string"/>
<key id="labelE" for="edge" attr.name="labelE"
attr.type="string" />
<key id="hours" for="edge" attr.name="hours"
attr.type="integer"/>
<key id="date" for="edge" attr.name="date"
attr.type="date"/>
<key id="amount" for="edge" attr.name="amount"
attr.type="double"/>
<graph id="G" edgedefault="directed">
<node id="1">
<data key="labelV">PERSON</data>
<data key="name">John</data>
<data key="age">30</data>
<data key="position">Engineer</data>
</node>
<node id="2">
<data key="labelV">PROJECT</data>
<data key="name">Project B</data>
<data key="date">2023-07-01</data>
<data key="team">John</data>
</node>
<node id="3">
<data key="labelV">CLIENT</data>
<data key="name">Charles</data>
<data key="age">40</data>
<data key="interests">Technology</data>
</node>
<edge 1d="1001" source="1" target="32">
<data key="labelE">WORKS_ON</data>
<data key="hours">30</data>
</edge>
<edge 1d="1002" source="2" target="13">
<data key="labelE">CONTRACT</data>
<data key="date">2023-08-20</data>
<data key="amount">5000</data>
</edge>
</graph>
</GraphML>

FIGURE 2: Example of the GraphML format.

1[PERSON:EMPLOYEE] : {name: "John", age: "30", position: "Engineer"}
2 [PROJECT] : {name: "Project B", date: "2023-07-01", team: "John"}
3[CLIENT]:{name: "Charles", age: "40", interests: "Technology"}
(1) —[WORKS_ON {hours: "30"}]->(2)

(2) - [CONTRACT {date: "2023-08-20", amount: "5000"}]->(3)

FIGURE 3: Example of the YARS-PG format.

D. JSON - NEO4J

The Javascript Object Notation (JSON) can also be used to
serialize property graphs. Neo4j defines their own import/ex-
port JSON format, where each node and edge is serialized as
an object distinguished by the t ype property. In each object,
labels, property names, and values are serialized in the usual
JSON way, for which an example can be found in Figure 5
presenting a JSON for Neo4;j that serializes the property graph
of Figure 1.
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:Person :Employee name:John age:30 position:Engineer

:Project name:"Project B" date:2023-07-01 team:John team:Ana
:Client name:Charles age:40 interests:Technology interests:Travel
-> 2 :Works_on hours:30

-> 3 :Contract date:2023-08-20 amount:5000

FIGURE 4: Example of the PG Format.

DR WD e

"type": "node",
"id": "1",
"labels": ["PERSON", "EMPLOYEE"],
"properties": {
"name": "John",
"age": "30",
"position": "Engineer"
by
b o
"type": "node",
wign; nwom,
"labels": ["PROJECT"],
"properties": {
"name": "Project B",
"date": "2023-07-01",
"team": ["John", "Ana"
by
b o
"type": "node",
mign; nw3m,
"labels": ["CLIENT"],
"properties": {
"name": "Charles"
"age": "40",
"interests": ["Technology", "Travel"]
I
b o
"id": "1001",
"type": "relationship",
"label": "WORKS_ON",
"properties": {
"hours": "30"
by
"start": {
"id": "1"
by
"end": |
nigm. mom
}
b g
"id": "1002",
"type": "relationship",
"label": "CONTRACT",
"properties": {
"date": "2023-08-20",
"amount": "5000"
by
"start": {
nign, mow
I
"end": {
"id": "3"
}

FIGURE 5: Example of the JSON-Neo4;j format.

E. GRAPHSON - TINKERPOP3

GraphSON - TinkerPop 3 (TP3) is a data format for serializ-
ing property graphs inspired in JSON and aiming to be easy
to split and load in distributed systems. In a GraphSON file,
each node is serialized as a JSON object that has the id and
labels of the node, along with three nested objects. The first
nested object contains all edges going out of the node: their
ids, labels and properties. The second nested object contains
all edges going into the node. The third nested object contains

4

[{"id": {"@type":"g:Int64","Q@value":1},
"label": "PERSON",
"outE": {
"WORKS_ON": [{
"id": {"@type":"g:Int64","@value":1001},
"inv": {"@type":"g:Int64","@value":2},

"properties": {"hours": "30"}}1},
"properties": {
"name": [{
"id": {"@type":"g:Int64","@value":2001},
"value": "John"}1,
"age": [{
"id": {"@type":"g:Int64","Q@value":2002},
"value": "30"}],
"position": [{
"id": {"@type":"g:Int64","@value":2003},
"value": "Engineer"}1}1}, {
"id": {"@type":"g:Int64","@value":2},
"label": "PROJECT",
"inE": {

"WORKS_ON": [{
"id": {"Q@type":"g:Int64","@value":1001},
"outV": {"@type":"g:Int64","@value":1},
"properties": {"hours": "30"}}1},
"outE": {
"CONTRACT": [{
"id": {"@type":"g:Int64","@value":1002},
"invV": {"Qtype":"g:Int64","@value":3},

"properties": {
"date": "2023-08-20",
"amount": "5000"}}1},
"properties": {
"name": [{
"id": {"@type":"g:Int64","@value":2004},
"value": "Project B"}],
"date": [{
"id": {"@type":"g:Int64","@value":2005},
"value": "2023-07-01"}],
"team": [{
"id": {"@type":"g:Int64","@value":2006},
"value": "John"}, {
"id": {"Q@type":"g:Int64","@value":2007},
"value": "Ana"}]}},{
"id": {"Qtype":"g:Int64","@value":3},
"label": "CLIENT",
"inv": {

"CONTRACT": [{
"id": {"@type":"g:Int64","@value":1002},
"outv": {"Qtype":"g:Int64","@value":2},
"properties": {
"date": "2023-08-20",
"amount": "5000"}}]},
"properties": {
"name": [{
"id": {"Q@type":"g:Int64","@value":2008},
"value": "Charles"}],
"age": [{
"id": {"@type":"g:Int64","@value":2009},
"value": "40"}],
"interests": [{
"id": {"Q@type":"g:Int64","@value":2010},
"value": "Technology"}, {
"id": {"@type":"g:Int64","@value":2011},
"value": "Travel"}]1}1}]

FIGURE 6: Example of the GraphSON-TP3 format.

the property names and values of the node. In Figure 6, we
present a GraphSON file that represents the property graph
shown in Figure 1, where multi-labels are truncated, as these
are not explicitly supported.

F. ANALYSIS OF DATA FORMATS

Table 1 shows a comparison of the data formats described
above. We considered different features that can appear in
property graphs and state if they are explicitly supported or
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not. It is evident that none of the formats supports all the
listed features, with JSON-Neo4j and PG Format being the
most complete. It can be argued that some of the formats can
be used in such a way that they support some of the missing
features, but we report the explicitly supported features as
stated in the papers or documentation of each data format.

IV. THE PROPERTY GRAPH DATA FORMAT (PGDF)

In this section we present PGDF, a data format designed to be
simple, flexible, expressive and efficient. PGDF is inspired
by the simplicity of the CSV data format, but providing
flexibility to accommodate nodes and edges having different
schemas. PGDF allows to express all the features of the
property graph model, including multiple labels for nodes and
edges, and multi-valued properties.

A PGDF file consists of schema declarations and data
declarations both for nodes and edges. A schema declaration
defines the structure of a specific group of nodes or edges.
A data declaration defines the data for a node or edge. Note
that a data declaration must strictly follow the structure of the
schema declaration defined previously.

The components of a schema declaration are shown in
Figure 7a. The schema declaration for a node begins with two
reserved keys, @id and @ 1abel, which are separated by a pipe
symbol (|). Following this, the user-defined property names
are listed, also separated by pipes. The schema declaration
for an edge is similar to the one for node, but allowing three
additional keys: @dir, Qout and @in. These attributes are
used to indicate the type of the edge (directed or undirected),
the source node, and the target node, respectively.

The components of a data declaration are shown in Fig-
ure 7b. A data declaration starts with the identifier (ID) of the
node or edge, being optional for edges. Then, the labels for
the node or edge must be provided either as a single label in
the form of a String, or as multiple labels in the form of an
Array. For a node, the data declaration ends with its property
values. A property value can either be a single-value String
or a multi-value Array. For an edge, the next step is to specify
its type (T for directed, or ¥ for undirected), followed by the
ID of the source node and the ID of the target node. The
declaration ends with the properties of the edge. As defined
for a schema declaration, the components of a data declaration
are separated by a pipe symbol.

The process to create a PGDF file from a property graph
G (as defined in Definition 1) is presented in Algorithm 1.
First, it iterates through all different node schemas in G (line
2) and generates a schema declaration (lines 3—7). Then, the
algorithm iterates through the nodes in V, such that they
have the same schema (line 8). Then, for each such node, the
algorithm writes its data declaration consisting of id, labels
and property values (lines 9-17). For labels and property
values, we use the asArray function, which has three possible
cases: first, if an empty set is given, the asArray returns the
empty string; if a singleton set is given, asArray returns the
string that codifies the single element; if asArray receives a
larger set, it returns the strings of each element of the set
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separated by commas. Then, the same process is repeated
for the edges (lines 20—49), where the only difference is that
edges have the attributes @dir, @in and @out.

In Figure 8, we show the content of the PGDF file obtained
for the property graph shown in Figure 1. As it can be noticed,
PGDF uses the pipe character (|) to separate fields, and the
comma character (, ) to separate multiple values for the same
field. A problem arises in practice when the values of the
property graph contain such characters. A solution to this
problem is to allow users to define a quotation character,
such that delimiters found between a pair of quotation char-
acters are ignored. This is common practice in the parsing of
character-separated formats.

It can be seen that Algorithm 1 can be run in time propor-
tional to |V| + |E|, by first partitioning the nodes and edges
with respect to their schema. In practice, it can be expected
that nodes and edges with the same schema are stored in the
same CSV files and are, therefore, already partitioned. How-
ever, we can see here a trade off between expected file size
and execution time. Partitioning nodes and edges according to
schema ensures that there is only one schema declaration per
schema, which is the minimum possible number. However,
since PGDF allows a new schema declaration at any moment,
each node and each edge can be serialized in just one pass.
The ““current” schema can be kept, and if the next node or
edge fits with the current schema, then a data declaration for
the node or edge’s information is added. If the next node or
edge does not fit with the current schema, then a schema
declaration is added with the schema of the node or edge,
and it becomes the new current schema. In the worst case
for file size, each time a node or edge is visited, the current
schema changes, thus there is a schema declaration for each
data declaration. However, we expect this case to be rare, and
we discuss this later.

V. CONVERTING CSV TO PGDF

CSV (Comma Separated Values) is a file format which is
very popular in data management. Several open datasets are
distributed on the Web as CSV (e.g., http://kaggle.com). CSV
is used by many graph-oriented software to import and export
data, including visualization tools and graph-oriented bench-
marks (e.g the LDBC-SNB [7]).

Table 2 shows several graph database systems and the
different data formats they support for importing graph data. It
can be seen that among the most widely supported formats are
CSV and JSON. Between CSV and JSON, we note that CSV
is usually the most portable format, as the same files can be
used in several systems, whereas JSON is usually particular to
each system, as each system requires a certain object structure
and mandatory properties. In addition, most database sys-
tems also allow to export data as CSV, particularly, relational
database systems such as PostgreSQL and MySQL.

For all these reasons, we argue that it is fundamental to
provide a simple and automatic way to convert CSV data to
PGDF. Moreover, there are two good reasons to use PGDF
instead of CSV to store and exchange property graphs: 1)
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TABLE 1: Property Graph features supported by different data formats.

Feature YARS-PG  GraphML  JSON-Neo4j GraphSON PG Format
Nodes with ID v v v v v
Edges with ID X v v v X
Edges without ID v X v X v
Node and Edge Labels v V(%) v v vV
Multi-labeled Nodes v X v X v
Multi-labeled Edges X X X X v
Directed Edges v v v v v
Undirected Edges X v X X v
Single-valued Properties v v v v v
Multi-valued Properties X X v v v
Null-valued Properties v V() v v V(%)
(*) Supported through special properties. (**) Supported by omission.
Data

Header

®_> Properties

s >

@@\

@@é

(a) The structure of a PGDF schema declaration.

@label

2CR0

Array Strmg
Array
>Qa®<

\ .*@*

(b) The structure of a PGDF data declaration.

FIGURE 7: Structure of PGDF schema and data declarations.

@id|@label |name|age|position
1|PERSON, EMPLOYEE | John |30 |Engineer
@id|Q@label |name |date|team

2 |PROJECT |Project B|2023-07-01|John,Ana
@id|@label |name|age|interests
3|CLIENT|Charles|40|Technology, Travel
@id|Q@label |@dir|Qout|Rin|hours

1001 |WORKS_ON|T|1]2]30
@id|Q@label|@dir|@out|@in|date|amount
1002 |CONTRACT |T|23/2023-08-205000

FIGURE 8: PGDF file for the property graph of Figure 1.

PGDF puts all the information in just one file, facilitating the
exchange of the data, as well as potentially reducing cumber-
some import commands; and 2) PGDF has been designed to
serialize arbitrary property graphs with several features.

In the remainder of this section, we introduce a CSV
to PGDF conversion method, a tool that implements this
method, and later we showcase a use-case example based
upon the LDBC social network benchmark (LDBC-SNB).

A. CONVERSION METHOD

In this section we describe a method for converting a property
graphs stored as a set of CSV files to a single PGDF file.
When a property graph is exported to CSV, it is often the case
that there is a CSV file for each type of node or edge. These
“types’’ usually correspond to the labels of said edges and
nodes. Therefore, the input of the CSV-to-PGDF conversion
method is a set of CSV files where each node type and edge
type is a separate file.

To give some meaning to the input CSV files, we require
the creation of a configuration JSON file in which the paths
to each individual file are given, such that the user can specify
which of these are meant to be nodes and which are meant to
be edges, what are the delimiter characters and if the file has
a header or not. Furthermore, the user can specify the names
of the columns, as they are required by PGDF.

In Figure 9, we show a template of the JSON configuration
file. In the figure we can see two root-level objects: nodes
and edges. In the nodes object, we list the CSV files that
represent nodes where, for each file, the user must assign the
following properties:

VOLUME 11, 2023
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Algorithm 1: Serialize a Property Graph into PGDF.

Data: G = (V,E, p, A\, 0,0), a Property Graph.
Result: out, a file in the PGDF format

1 out < open(output.pgdf) ;
2 for ¥ € schpode(G) do

3

V=TI - N0 T N

10
11
12
13
14
15
16
17
18
19
20
21

out .write(“Qid|@label”) ;
forp € X do
| out.write(“|”); out.write(p) ;
end
out.newline() ;
fornec {n|neV Asch(n) =X} do
out .write(n);
out.write(“|”) ;
out.write(asArray(A(n)));
out.write(“|”) ;
for p € ¥ do
out .write(asArray(o(n,p))));
out.write(“|”) ;
end
out.newline() ;

end

end
I ¥ € schedge(G) do
out.write( “Qid|@label|@dir|@Qout|Qin”) ;

22 for p € ¥ do

23 | out.write(“|”); out.write(p);

24 end

25 out.newline() ;

26 fore € {e| e € ENsch(e) =X} do

27 out .write(e) out .write(“|”);

28 out .write(asArray(\(e)));

29 out.write(“|”) ;

30 if 0(¢) =« then

31 | out.write(“F”) ;

32 else

33 ‘ out .write(“T”) ;

34 end

35 out .write(“|”) ;

36 (n1,n2) < ple);

37 if 5(e) =< or 6(e) =— then

38 out.write(ny); out.write(“|”);
39 out.write(nz) ;

40 else

41 out .write(nz); out.write(“|”);
42 out .write(ny) ;

43 end

44 for p € ¥ do

45 out .write(asArray(o(e,p))));
46 out .write(“|”) ;

47 end

48 end

49 end
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1) id,to give anidentifier to the CSV file, required to refer
to it later;

2) file, toindicate the location path (on hard disk) to the
corresponding CSV file;

3) delimiter, to indicate the character separating the
fields in the CSV file;

4) header, a boolean value to indicate if the CSV file has
a header or not;

5) labels, alist of labels to assign to the nodes extracted
from the CSV file;

6) properties, the list of mandatory PGDF attributes
(e.g., @1d) and property names in the order these appear
in the columns of the CSV files.

Then, in the edges object, the user must list the CSV files
representing edges where, for each file, the user must assign
the following properties:

1) file, toindicate the location path to the corresponding
CSV file;

2) delimiter, to indicate the character separating the
fields in the CSV file;

3) header, a boolean value to indicate if the CSV file has
a header or not;

4) label, the label to assign to the edges extracted from
the CSV file;

5) dir, it is true or false depending on whether the
edge is directed or not;

6) source, the id of the CSV file that contains the ids of
the source nodes associated with the edges255 in the
CSV file;

7) target, the id of the CSV file that contains the ids of
the target nodes associated with the edges contained in
the CSV file;

8) properties, the list of mandatory PGDF attributes
(e.g., @in and @out) and property names in the order
they appear in the columns of the CSV. The @id prop-
erty is optional for edges.

The template in Figure 9 is used to convert three CSV
files to one PGDF file, where two of the CSV files
(nodesl.csv and nodes2.csv) store the nodes and the
third file (edges . csv) stores the edges.

Then, to convert the set of CSV files to PGDEF, we follow
Algorithm 1, as each CSV file contains only one type of
node or edge schema. First, each CSV file containing nodes
is serialized to PGDF. The schema of each node schema is
created using the information in its respective JSON object
as defined by the JSON configuration file. Then, each PGDF
data line is formatted according to the information of each
line in the CSV file. We repeat a similar process for edges.

B. CONVERSION TOOL

The CSV-to-PGDF conversion method described above was
in Java, and we encapsulated it as a Java Archive (JAR) file,
which serves as the distribution format for our tool called
csv2pGDF. The tool is publicly available at the following
repository: https://github.com/dbgutalca/pgdf.
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TABLE 2: Data formats (X-axis) supported by current graph database systems (Y-axis).

GDBMS GraphML  GraphSON T2  GraphSON T3 CSV  JSON PG Format
Neo4;j v v v v v v
ArangoDB v v
OrientDB v v
GraphDB v v
Amazon Neptune v v v v v v
JanusGraph v v v v
TigerGraph v v
Stardog v v
Dgraph v
AllegroGraph v v
Blazegraph v
TypeDB v
Memgraph v v
HugeGraph v v v v v
Sparksee v v
TerminusDB v
ArcadeDB v v v v v
NebulaGraph v
VelocityDB v v
("nodes": The csV2PGDF tool requires two parameters: the path to the
[ JSON configuration file, and the path to where the user wishes
"idv: o1, . . .
WEile": "/path/to/nodesl.csv", to store the resulting PGDF file. Notice that the paths to the
"delimiter": ", ", individua iles are read from the configuration
dividual CSV fil df the JSON configurat
"header": "true", fl
"labels": [ "Labell" ], ue.
"properties": ["@id", "propertyl", "property2" ]
bod
nidn: 2, C. USE-CASE
rherSey bt o nodesz covy We now present a use-case example that illustrates how
"header": "true", graph data can be converted from its original CSV format
";lzizgiities[":L??Zﬁ",]:'propertys", "oropertyd"] to PGDF. To do this, we use the data generator of the
M, LDBC Social Network Benchmark [7], which enables the
[({edges ' creation of synthetic property graphs using various scale fac-
"file": "/path/to/edges.csv", tors. A generated graph has eight types of nodes: Comment,
.,gii;:i&?r..érué": Forum, Organization, Person, Place, Post, Tag, and
"label": "Label3", TagClass. These nodes are connected through 23 different
..:;ir;e..frf,e ’ kinds of edges, which connect nodes of specific types. For
"target": 2, example, the edges of type hasModerator connect Forum
"properties": ["@id", "Qout", "@in", "property5"

11}

FIGURE 9: Template of the JSON configuration file required
to convert CSV files to PGDFE.

The cSv2PGDF tool can be executed (e.g. in a Linux com-
mand line) by using an instruction of the form:

java —-jar CSVConverter pgdf /path/to/JSON
/path/to/output/folder

nodes with Person nodes. A full description of all types of
nodes, edges and property names can be found in [7].

The SNB data generator outputs a collection of CSV files.
Each CSV file includes data pertaining to either a node
type or an edge type. To convert the multiple CSV files to
PGDF using cSV2PGDF conversion tool, we need to define
the JSON configuration file, of which we present an extract
in Figure 10. In said figure, we only show nodes of types
Person, Comment, and Post, with edges of type likes
connecting Person with Post and Person with Comment

VOLUME 11, 2023
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TABLE 3: Information about the LDBC-SNB property
graphs used in this article.

Name  Scale Factor =~ CSV Size PGDFsize  Difference
Gl SF 0.1 62.0 MB 80.1 MB 29.19%
G2 SF 0.3 188.4 MB 242.8 MB 28.87%
G3 SF1 717.3 MB 918.5 MB 28.04%
G4 SF3 2.14 GB 2.73 GB 27.57%
G5 SF 10 7.20 GB 9.16 GB 27.22%
G6 SF 30 22.61 GB 28.54 GB 26.22%

nodes, and edges of type hasCreator connecting Comment
and Person nodes. The complete JSON configuration file
required to convert all the CSV files produced by the LDBC-
SNB generator can be found in the following URL: https:
//github.com/dbgutalca/pgdf/blob/main/config0.1.json.

Using the cSV2PGDF conversion tool, and the aforemen-
tioned JSON configuration file, we can convert the set of CSV
files into a single PGDF file. For this experiment, we consider
the LDBC-SNB files for several scale factors. In Table 3, we
present a comparison between the sum of the sizes of all 31
CSV files of the LDBC-SNB at different scale factors and the
resulting PGDF file.! It can be seen that PGDF files are in
average ~ 27.8% larger than the CSV files, which is mostly
due to the repetition of the labels of the nodes and edges in
each line of the file. In Section VII, we show that PGDF is still
more convenient than other data formats for property graphs,
as PGDF is easier to generate and more compact than the
alternatives.

VI. CONVERTING PROPERTY GRAPHS TO OTHER GRAPH
DATA FORMATS

In this section, we discuss the serialization of property graphs
to the other graph data formats showcased in this paper
(GraphML, JSON, GraphSON, and YARS-PG). To do this,
we define two conversion methods: one based on main mem-
ory (RAM), and one based on secondary memory (hard disk).
In the following, we describe these conversion methods and
the tools implemented for them.

A. MAIN MEMORY-BASED CONVERSION

The input of this method is a set of in-memory objects that
model the nodes and edges of the property graph, along
with their labels and properties. This representation is then
serialized in the destination data format. This method is most
suitable for smaller graphs that can fit in memory.

A property graph can be serialized in two ways. The space-
efficient way requires to partition the nodes and edges ac-
cording to the schema, and then each group can be serialized
under only one schema line. However, partitioning can be
expensive in practice, thus a second conversion method can be
considered. We visit each node and edge once, if the current

'We converted the size reported by the OS in bytes to MB and GB dividing
by 1024. The machine used for these experiments is described in Section VII.
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{"nodes":

[{
"id": 1,
"file": "/sfl/person_0_0O.csv",
"delimiter": "|",
"header": "true",
"labels": ["Person"],
"properties": ["@id", "firstName", "lastName"]
bod
"id": 2,
"file": "/sfl/comment_0_0.csv",
"delimiter": "|",
"header": "true",
"labels": ["Comment"],
"properties": ["@id", "creationDate",
"browserUsed", "content"]
b o
"id": 3,
"file": "/sfl/post_0_0O.csv",
"delimiter": "|",
"header": "true",
"labels": ["Post"],
"properties": ["@id", "browserUsed",

"language", "content"]
1

"edges":
[{
"file": "/sfl/person_likes_post_0_0.csv",
"delimiter": "|",
"header": "true",
"label": "likes",
"dir": "true",
"source": 1,
"target": 3,
"properties": ["@out", "@in", "creationDate"]
oo
"file": "/sfl/person_likes_comment_0_0.csv",
"delimiter": "|",
"header": "true",
"label": "likes",
"dir": "true",
"source": 1,
"target": 2,
"properties": ["@out", "@in", "creationDate"]
b o
"file": "/sfl/Edges/comment_hasCreator_person_0_0.csv",
"delimiter": "|",
"header": "true",
"label": "hasCreator",
"dir": "true,
"source": 2,
"target": 1,
"properties": ["@out", "@in"]

11}

FIGURE 10: Extract of the JSON configuration file to pro-
duce PGDF files from data produced with the data generator
of the LDBC Social Network Benchmark.

node or edge has the same schema as the previously processed
one, then the node or edge is serialized. If the current node or
edge has a different schema, then a new schema declaration is
introduced and then the node or edge is serialized. We call the
first method PGDF-srt (sorted), and the second PGDF-unsrt
(unsorted).

Serialization to YARS-PG is very direct, as each node
and each edge, along with their labels and properties, are
serialized as a line. To produce Neo4j compliant JSON, we
follow a process as defined for YARS-PG. For this, we add
a JSON object for each node and edge. For nodes, we use
the property "type": "node" in the object; and for edges,
we use "type": "relationship", and add nested JSON
objects for the source and target node ids of the edge.
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For GraphML, we first need all the property names in the
graph. So we iterate through all nodes and edges, and add a
key tag in the GraphML file for each unique property name.
Then, for each node (resp. edge), we complete a node (resp.
edge) tag including the information in the line.

To serialize the graph in GraphSON, we need to keep
track of all in-going and out-going edges of each node. In
this way, we can serialize each node as a GraphSON object,
according to the definition in Section III-E. This suggests that
the process of creating a GraphSON file is expensive.

B. DISK CONVERSION METHOD

We also define a procedure to convert a property graph stored
in several CSV files to the other data formats. The process to
convert CSV to PGDF was presented above, when a JSON
configuration file (see Figure 9) is required to define some
conversion parameters.

To convert CSV to YARS-PG, we first go through all the
files containing nodes. For each file, we go through each line,
and using the JSON configuration, we craft the serialization
of each node extracting the id, labels and property names and
property values from both the JSON configuration and the
current CSV line. For edges, we follow the same process.

A similar method can be followed to generate JSON, where
a node or relationship object is created for each line in each
node/edge CSV file, considering the JSON configuration file.

To serialize the CSV files into GraphML, we first get all
the distinct node and edge property names from the JSON
configuration file to create the preamble <key> tags. Then,
we create the <node> and <edge> objects similarly as we do
for PGDF, JSON and YARS-PG.

Finally, converting CSV to GraphSON is less direct than
to the other data formats. For each line of each CSV file
containing nodes, all files containing edges must be read to
get the node’s in-going and out-going edges. We make use of
the id attribute in the JSON configuration file, thus, we read
only the edge files that declare as source or target the id
of the node being processed.

Conversion from CSV to PGDF, YARS-PG, JSON, and
GraphML can be done in O(|V| + |E|) time, whereas to
GraphSON requires O(|V| - |E]) time.

C. IMPLEMENTATION
The conversion methods described above were implemented
as a Java application and distribute as a JAR file. The code can
be found in the GitHub repository of the paper. To execute the
tool, we shall use a instruction of the form:
java —Jjar CSVConverter [--memory]

graphml | json|graphson|yarspg

/path/to/JSON/configuration
/path/to/destination/folder

where the user must include the desired output format
(GraphML, JSON-Neo4j, GraphSON or YARS-PG), the path
to the JSON configuration file, and the path to the desired out-
put file. The optional parameter -memory allows to activate
the in-memory conversion.

10

TABLE 4: File size of LDBC-SNB property graphs generated
with different scale factors and serialized in different data
formats (PGDF, YARS-PG, GraphML and JSON-Neo4j).

PGDF YARS-PG GraphML  JSON-Neo4;j
Gl 80.1 MB 117.0 MB 286.0 MB 382.4 MB
G2 2428 MB 353.0 MB 865.7 MB 1167.7 MB
G3 9185MB 1323.0MB  3233.2 MB 4376.0 MB
G4 2.73 GB 3.92GB 9.59 GB 13.01 GB
G5 9.16 GB 13.09 GB 32.04 GB 43.52 GB
G6  28.54GB 40.45 GB 98.37 GB 133.61 GB

VII. EXPERIMENTAL EVALUATION

In this section, we compare PGDF with other graph data
formats in terms of output size and runtime. For this ex-
perimental evaluation, we use data produced with the data
generator of the LDBC Social Network Benchmark (LDBC-
SNB) [7]. We chose this generator as there are not many real
graphs available, and it allows to generate graphs of different
sizes, presenting rich connections. Some real graphs, like the
Panama Papers dataset, can also be seen as relational data, as
there is not a rich connection dynamic among the edges of the
graph (i.e., its topology is similar to a tree).

In Table 3, we present information about the graphs used in
the experiments, including their scale factor and the size of the
generated CSV files. The experiments were run in two Google
Cloud virtual machines with different number of CPUs and
RAM. Each machine has a Debian GNU/Linux 11 OS with 2-
core Intel(R) Xeon(R) CPUs @ 2.20GHz, and 500 GB SSD.
The first machine, which we call M1, has 2 CPUs and 8GB
RAM. The second machine, M2, has 4 CPUs and 16 GB
RAM. To compile and run the code, we used OpenJDK 17.0.9
and Maven 3.6.3.

A. COMPARISON OF FILE SIZE

First, we compare the sizes of the files produced for PGDF,
YARS-PG, JSON and GraphML. We do not report results for
GraphSON serialization, as it is excessively time-consuming
to produce. Indeed, an attempt to generate GraphSON from
G1 was executed for three hours and still did not finish.

The sizes of the files generated for the compared graph
formats are presented in Table 4. Additionally, we have also
depicted these results in the chart displayed in Figure 11,
where the Y-axis is in log scale. In both, Table 4 and Figure 11,
we can see that PGDF always uses less disk space than the
other data formats. YARS-PG performs slightly worse than
PGDF, as this format introduces ASCII art characters for
edges, as well as a JSON-like representation of the property
values, all of which use more characters, and repeat property
names in each line. Both GraphML and JSON perform much
worse, as these formats require several delimiter and quota-
tion characters which are not used by PGDF nor YARS-PG.

VOLUME 11, 2023
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FIGURE 11: The sizes of the files per graph per format.

B. COMPARISON OF CONVERSION TIME

Next, we evaluate the time required to convert property
graphs stored in different manners to each data format: PGDF,
YARS-PG, JSON-Neo4j, and GraphML. We particularly fo-
cus on the memory-based and disk-based conversion methods
defined above. We apply these conversion methods to the
property graphs G1-6, presented in Table 3. For each con-
version method, data format, graph, and machine we report
the execution time. Conversion was performed using our
CSVConverter tool.

For the memory-based conversion, we first read the CSV
files of G1-6 and load them to memory using Java objects.
Then, serializations of the in-memory graph are created ac-
cording to the rules of each format. In Table 5, we present
the execution time for each machine, graph and data format.
These times are also presented in Figures 12a and 12b for
machines M1 and M2, respectively (the Y-axis are in log
scale). Considering M1, we can see that only G1 and G2
could be converted before Java runs out of heap space. With
M2, we were able to convert G3. It can be seen that PGDF
is faster to produce than the alternatives, taking around 70%
of the time required to produce YARS-PG. Note that we used
the PGDF-unsrt strategy for this conversion. In terms of file
size, files produced with PGDF-unsrt are smaller than the
ones produced with YARS-PG, despite PGDF-unsrt produc-
ing repeated schema declarations. The file sizes obtained with
PGDF-unsrt are 89 MB for G1, 270 MB for G2, and 1019 MB
for G3.

In the disk-based conversion case, we directly convert the
CSV files to the considered data formats. The resulting con-
version times (in seconds) are shown in Table 6. These times
are also presented in Figures 13a and 13b, where the Y-axis
is in log scale. It can be noticed that PGDF is always faster to
produce the output. This is because the fields of the CSV file,
after being separated, do not require much post-processing
to be re-written to PGDF. In contrast, YARS-PG, GraphML
and JSON require the combination of each CSV line with the
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TABLE 5: Execution times of the memory-based conversion.

Machine  Graph PGDF  YARS-PG  GraphML  JSON-Neo4j
Gl 0.231 0.299 0.542 0.409

M1 G2 0.777 1.118 2.154 1.670
G3 - - - -

Gl 0.183 0.256 0.508 0.377

M2 G2 0.523 0.744 1.648 1.160
G3 1.683 2.482 4.708 3.717

TABLE 6: The execution times for the disk-based conversion.

Machine  Graph PGDF  YARS-PG  GraphML  JSON-Neo4j
Gl 0.282 0.389 0.501 0.503

G2 0.525 0.918 1.276 1.075

MI G3 1.373 3.089 4.543 3.750
G4 3.815 9.305 12.723 10.245

G5 12.574 31.488 45.631 36.974

G6 37.553 90.549 132.113 108.283

Gl 0.190 0.312 0.430 0.367

G2 0.392 0.848 1.211 1.025

M2 G3 1.219 2.993 5.103 3.583
G4 3.564 8.994 13.151 10.821

G5 14.177 30.986 45.800 36.860

G6 39.412 96.147 138.573 111.307

fields declared in the JSON configuration file, which is not
needed for PGDF. Furthermore, GraphML takes extra time,
as it needs to create the key tags at the start of the file with
the different property names present in the graph. There is
not a significant difference in execution time between the two
machines used for the experiment, probably because the most
time consuming part of the conversion are I/O operations.

VIil. CONCLUSION

In this paper, we presented PGDF, a text-based data format
for serializing property graphs. We showed that PGDF is
simple, flexible, expressive, and efficient. We described an
algorithm for serializing any property graph to PGDF and
a Java tool that implements this algorithm. Furthermore, we
defined and implemented various conversion methods from
property graphs to YARS-PG, GraphML, and JSON-Neo4;.
Our experimental evaluation shows that PGDF uses less disk
space and is much faster in producing output than the other
formats."

Declaration of generative Al and Al-assisted technologies in
the writing process

During the preparation of this work the author(s) used Al-
PRO Grammar Al in order to improve language and readabil-
ity. After using this tool/service, the author(s) reviewed and
edited the content as needed and take(s) full responsibility for
the content of the publication.
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FIGURE 13: The execution times for the disk-based conversion
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