
Extracting Graphs from Tables via Conceptual Models
Sebastián Ferrada1

1IMFD Chile & Data and Artificial Intelligence Initiative, Universidad de Chile, Beauchef 851, Santiago, Chile

Abstract
This poster presents initial progress on a mapping to convert relational databases into knowledge graphs
by utilizing the conceptual model of the database as a means of capturing its underlying semantics.
We leverage the ERDoc language for defining Entity-Relationship Diagrams, for which we provide
semantics. Unlike previous approaches, this method assumes the conceptual model as part of the input
and emphasizes the formal definition, semantic correctness and other properties of the mapping.

Keywords
Data Mapping, Knowledge Graphs, Relational Databases, Conceptual Models

1. Introduction

Knowledge graphs (KGs) model the data of a given domain as a set of entities or objects
connected through a rich network of relationships [1]. Similarly, the conceptual model usually
conceived when designing a relational database defines the types of entities that will inhabit
the database and the types of relationships in which they can participate.

As most data is stored in relational databases, we propose leveraging their conceptual model
to capture the underlying semantics and define a mapping procedure that produces a KG from
its data. Such a mapping can be useful to be able to apply richer querying [2] and analytics [3]
over the mapped data and, further, the mere definition of the mapping can allow for a virtual
graph view of the relational data which can be accessed employing query translation.

In this poster, we present progress on the development of such a mapping that transforms
a relational database into either an RDF/RDF-star graph or a property graph (PG), using the
conceptual model of the input database. We leverage the ERDoc language [4] used to define
Entity-Relationship Diagrams (ERDs) [5], which are a common way to design and communicate
conceptual models. Our mapping, differently from Stoica et al. [6], is not direct (it requires extra
input) but considers the semantics embedded in the conceptual model, yielding a semantically
more accurate graph. For instance, in N-to-N relationships, [6] would create a node for each
tuple in the table storing the relationship, whereas our approach translates such tuples directly
to edges. Similarly, multivalued attributes would each be mapped to a node by [6], whereas
our approach produces multivalued properties. Differently from Barret et al. [7], we assume
that the conceptual model is part of the input of our mapping, and we shall focus on the formal
definition of the mapping and its properties (e.g., information and query preserving [8]).

Woodstock’22: Symposium on the irreproducible science, June 07–11, 2022, Woodstock, NY
$ sebastian.ferrada@uchile.cl (S. Ferrada)
� https://sferrada.com (S. Ferrada)
� 0000-0002-9834-8376 (S. Ferrada)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:sebastian.ferrada@uchile.cl
https://sferrada.com
https://orcid.org/0000-0002-9834-8376
https://creativecommons.org/licenses/by/4.0

2. Conceptual Models

The conceptual model, defined as ERDs by Chen [5], aims to provide a unified view of data that
allows to interoperate the relational model [9] and the network model [10]. As such, it also can
allow us to leverage it to interoperate with RDF graphs [11], RDF-star graphs [12] or PGs [13].

ERDoc is a scripting language designed to specify ERDs. The idea for our mapping is to
receive an input database along with the ERDoc document that codifies its conceptual model.
To formalize our mapping, we provide semantics to a fragment of ERDoc [4].

Definition 1. An Entity-Relationship Diagram (ERD) 𝒞 is a tuple (ℰ ,ℛ) such that:

• ℰ is a set of entities. An entity is an expression of the form E{𝐾1, ... ,𝐾𝑛}{𝐴1, ... , 𝐴𝑚},
where E ∈ ℰ is the name of the entity, {𝐾1, ... ,𝐾𝑛}, is the non-empty set of prime attribute
names of E, and {𝐴1, ... , 𝐴𝑚} is the possibly empty set of non-prime attribute names.

• ℛ is a set of relationships. A relationship R⟨(E1, 𝐶1), ... , (En, 𝐶𝑛)⟩{𝐴1, ... , 𝐴𝑚} is
such that R ∈ ℛ is the relationship name, E1, ... ,En, elements of ℰ , are the participating
entities, 𝐶1, ... , 𝐶𝑛 are the cardinalities and participation constraints of each participating
entity, and {𝐴1, ... , 𝐴𝑚} is the possibly empty set of relationship attribute names.

• A weak entity W⟨(E1,R1), ... , (El,Rl)⟩{𝑃1, ... , 𝑃𝑛}{𝐴1, ... , 𝐴𝑚}, is such that W ∈ ℰ is
the name of the weak entity, Ei ∈ ℰ for 𝑖 ∈ {1, ... , l} are the names of the entities that W
depends on, Ri ∈ ℛ for 𝑖 ∈ {1, ... , l} are the names of the relationships through which W
depends on each Ei, {𝑃1, ... , 𝑃𝑛} is the non-empty set of attribute names that are part of
the partial key of W, {𝐴1, ... , 𝐴𝑚} is the possibly empty set of non-prime attribute names.

An example of an ERD can be found in Figure 1b, where Person and Bank are Entities, Account
is a Weak Entity depending on Bank via relationship ofBank (which means that the primary
key of Account is unique only for a given Bank), and hasAccount is an N-to-N relationship.

3. Mapping Relational Databases to Knowledge Graphs

Our mappingℳ is such that, given a relational database D with primary and foreign keys Σ
(following the definition of Sequeda et al. [8] over a domain of values 𝒱), and an ERD 𝒞,ℳ(D, 𝒞)
returns a PG 𝐺 = (𝑉,𝐸, 𝜎, 𝜑, 𝜆) (following the definition of Angles [13]). RDF graphs can also
be produced later on (e.g., by using the mapping of [14]). We assume that D is in BCNF [15].

Non-weak Entities E{𝐾1, ... ,𝐾𝑛}{𝐴1, ... , 𝐴𝑚} are mapped to a relation 𝑅E ∈ D, such
that the attributes of 𝑅E are 𝑎𝑡𝑡(𝑅E) = {𝐾1, ... ,𝐾𝑛, 𝐴1, ... , 𝐴𝑚}, and 𝑅E[𝐾1, ... ,𝐾𝑛] is a
primary key. To map such a relation to a graph, we take each tuple 𝑡 ∈ 𝑅E, where 𝑡 =
(𝐾1 : 𝑣1, ... ,𝐾𝑛 : 𝑣𝑛, 𝐴1 : 𝑣𝑛+1, ... , 𝐴𝑚 : 𝑣𝑛+𝑚), with 𝑣1, ... , 𝑣𝑛 ∈ 𝒱 and 𝑣𝑛+1, ... , 𝑣𝑛+𝑚 ∈
𝒱 ∪ {null}, and map it to a node 𝜂 = 𝑓𝑛(𝑣1, ... , 𝑣𝑛), where 𝑓𝑖 : 𝒱 𝑖 → 𝒱 is a function that
returns identifiers . Then, we extend the property assigning function 𝜎 to contain 𝜎(𝜂, 𝑝) = 𝑣
for each 𝑝 : 𝑣 ∈ 𝑡. Finally, we extend the label assigning function 𝜆 to include 𝜆(𝜂) = 𝑅E. It
can be seen that if 𝑓𝑖 is bijective, this mapping is reversible, and thus information preserving [8].

The mapping of relationships to the relational model is more nuanced and depends on the
number of participating entities, the presence or absence of attributes, and even the cardinalities

(a) The Tables. (b) The ERD. (c) The Graph.

Figure 1: The proposed mapping process.

and participation constraints. We will summarize two acceptable mappings that preserve BCNF.
Let us consider the generic relationship R⟨(E1, 𝐶1), ... , (En, 𝐶𝑛)⟩{𝐴1, ... , 𝐴𝑚}.

If 𝑛 = 2, {𝐴1, ... , 𝐴𝑚} = ∅, and either 𝐶1 or 𝐶2 are one and only one cardinalities, the
first mapping applies. W.l.o.g., we assume that 𝐶2 is one and only one, and that the partic-
ipating entities are E1{𝐾1, ... ,𝐾𝑛1}{𝐵1, ... , 𝐵𝑚1} and E2{𝐽1, ... , 𝐽𝑛2}{𝐹1, ... , 𝐹𝑚2}, which
are mapped to relations 𝑅E1 and 𝑅E2 respectively. To map this relationship, we extend 𝑅E2

so that att(𝑅E2)← att(𝑅E2) ∪ {𝐾1, ... ,𝐾𝑛1} and 𝑅E2 [𝐾1, ... ,𝐾𝑛1] REF 𝑅E1 [𝐾1, ... ,𝐾𝑛1] is
a foreign key. To convert this foreign key to graph elements, for each tuple 𝑡 ∈ 𝑅E2 , where
𝑡 = (𝐾1: 𝑣1, ... ,𝐾𝑛1: 𝑣𝑛1 , 𝐽1: 𝑣𝑛1+1, ... , 𝐽𝑛2: 𝑣𝑛1+𝑛2 , 𝐹1: 𝑣𝑛1+𝑛2+1, ... , 𝐹𝑚2: 𝑣𝑛1+𝑛2+𝑚2) we
create an edge 𝑒= 𝑓𝑛1+𝑛2(𝑣1, ... , 𝑣𝑛1+𝑛2), with 𝜑(𝑒)= (𝑓𝑛1(𝑣1, ... , 𝑣𝑛1), 𝑓𝑛2(𝑣𝑛1+1, 𝑣𝑛1+𝑛2)),
and 𝜆(𝑒)=R. Yet again, if 𝑓𝑖 is bijective, then this transformation is reversible.

For any other case of relationship R (e.g., 𝑛 > 2 or {𝐴1, ... , 𝐴𝑚} ≠ ∅), a relation 𝑅R for the
relationship is created and it contains foreign keys referencing all the relations mapping the
participating entities. The primary key of 𝑅R depends on the cardinalities and participation
constraints [5]. Each tuple 𝑡 ∈ 𝑅R can be mapped to an edge only if 𝑛 = 2. Otherwise, 𝑡 should
be mapped to a node, and an edge for each foreign key must be created, as is done in [6].

Weak entities W⟨(E1,R1), ... , (El,Rl)⟩{𝑃1, ... , 𝑃𝑛}{𝐴1, ... , 𝐴𝑚} are mapped into a relation
𝑅W, similar to the first relationship case, as the cardinality with which W participates in every
Ri is one and only one. 𝑅W has attributes att(𝑅W) = 𝒦 ∪ {𝑃1, ... , 𝑃𝑛, 𝐴1, ... , 𝐴𝑚}, where
𝒦 is the set of all the prime attributes of all the relations 𝑅Ei

of each Ei. 𝑅W has therefore
foreign keys referencing to each 𝑅Ei

. Each tuple 𝑡 ∈ 𝑅W is mapped to a node 𝜂 with id
𝑓|𝒦|+𝑛(𝑡[𝒦 ∪ {𝑃1, ... , 𝑃𝑛}]), label 𝜆(𝜂) = W, and each foreign key is mapped to an edge
without properties and the label of the respective relationship Ri going from 𝜂 to the respective
node representing the referenced tuple in 𝑅Ei

.
Example. In Figure 1a, we present 4 relations that follow the ERD of Figure 1b. These

are Person(SSN, name), Bank(SWIFT, name), Account(number, SWIFT, name), and HasAc-

count(SSN, number, SWIFT). Note that Account is a weak entity and HasAccount is an N-to-N
relationship. The tuples in Figure 1a are translated to the graph of Figure 1c, following the rules
of each case. See how, for instance, the tuple (number: 333, SWIFT: TTQCL, type: checking)
from relation Account is mapped to a node with id 𝜂 = 𝑓1(333), label 𝜆(𝜂) = “Account”,
properties 𝜎(𝜂, number) = 333 and 𝜎(𝜂, type) = “checking”, and to and edge 𝑒, such that
𝜑(𝑒) = (𝜂, 𝑓1(“TTQCL”)) and 𝜆(𝑒) = “ofBank”. This mapping is similar to [6]. However, we
can extract the appropriate label for 𝑒 from the conceptual model. Our mapping presents its
difference particularly when mapping the relation HasAccount. The tuple (SSN: 111, number:
333, SWIFT: TTQCL) is mapped, according to [6], to a node with label “HasAccount”, with one
edge to the node mapping the person with ID 𝑓1(111), and another to the node of the Account
with ID 𝑓2(333,TTQCL). Our mapping simply creates one edge 𝑒′, with 𝜆(𝑒′) = “HasAccount”,
and 𝜑(𝑒′) = (𝑓1(111), 𝑓2(333,TTQCL)). This is not only more semantically accurate but also
implies the use of fewer joins when querying the resulting graph.

4. Conclusion and Future Directions

In this poster, we present initial progress on a formal mapping that, given a relational database
and its conceptual model, produces a knowledge graph that behaves differently from [6].
Initially, we consider property graphs, but RDF and RDF-star graphs can also be produced.
Further, we provide semantics for a fragment of the ERDoc language and a formalization of
the elements present in an ERD. We are currently defining the translations of the rest of the
ERD constructs (class hierarchies, aggregations, multivalued attributes, etc.) and studying the
general properties of information and query preservation [8] of the mapping. We note that in
the future, we may leverage the work by Barret et al. [7] to obtain the conceptual model for the
mapping automatically. We are also working on a mapping algorithm and a tool implementation.
Furthermore, we can explore using the conceptual model to generate SHACL constraints [16]
to validate the mapping output.

Acknowledgments

Partly funded by ANID, Millennium Science Initiative Program, Code ICN17_002, and by the
DAII of the FCFM of Universidad de Chile.

References

[1] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. de Melo, C. Gutierrez, S. Kirrane, J. E.
Labra Gayo, R. Navigli, S. Neumaier, A.-C. Ngonga Ngomo, A. Polleres, S. M. Rashid, A. Rula,
L. Schmelzeisen, J. Sequeda, S. Staab, A. Zimmermann, Knowledge Graphs, volume 22 of
Synthesis Lectures on Data, Semantics, and Knowledge, Springer Nature, 2021.

[2] L. Libkin, D. Vrgoč, Regular path queries on graphs with data, in: Proceedings of the 15th
International Conference on Database Theory, ACM, Berlin Germany, 2012, pp. 74–85.
doi:10.1145/2274576.2274585.

http://dx.doi.org/10.1145/2274576.2274585

[3] A. Hogan, J. L. Reutter, A. Soto, In-Database Graph Analytics with Recursive SPARQL, in:
The Semantic Web – ISWC 2020, volume 12506, Springer International Publishing, Cham,
2020, pp. 511–528. doi:10.1007/978-3-030-62419-4_29.

[4] M. López, S. Ferrada, A. Hogan, ERDoc: A Web Interface for Entity-Relation Modelling, in:
Proceedings of the 3rd International Workshop on Data Systems Education, ACM, 2024.

[5] P. P.-S. Chen, The entity-relationship model—toward a unified view of data, ACM
Transactions on Database Systems 1 (1976) 9–36. doi:10.1145/320434.320440.

[6] R. Stoica, G. Fletcher, J. F. Sequeda, On directly mapping relational databases to property
graphs, in: 13th Alberto Mendelzon International Workshop on Foundations of Data
Management, AMW 2019, CEUR-WS. org, 2019, p. 06.

[7] N. Barret, I. Manolescu, P. Upadhyay, Computing Generic Abstractions from Applica-
tion Datasets, in: EDBT 2024 - 27th International Conference on Extending Database
Technology, volume 27, 2024, pp. 94–107.

[8] J. F. Sequeda, M. Arenas, D. P. Miranker, On directly mapping relational databases to RDF
and OWL, in: Proceedings of the 21st International Conference on World Wide Web, ACM,
2012, pp. 649–658. doi:10.1145/2187836.2187924.

[9] E. F. Codd, A relational model of data for large shared data banks, Communications of the
ACM 13 (1970) 377–387. doi:10.1145/362384.362685.

[10] C. W. Bachman, Data structure diagrams, ACM SIGMIS Database: the DATABASE for
Advances in Information Systems 1 (1969) 4–10. doi:10.1145/1017466.1017467.

[11] R. Cyganiak, D. Wood, M. Lanthaler, G. Klyne, J. J. Carroll, B. McBride, RDF 1.1 Concepts
and Abstract Syntax, W3C Recommendation, W3C, 2014.

[12] O. Hartig, Foundations of RDF* and SPARQL* : (An Alternative Approach to Statement-
Level Metadata in RDF), in: 11th Alberto Mendelzon International Workshop on Founda-
tions of Data Management and the Web., volume 1912, Montevideo, Uruguay, 2017.

[13] R. Angles, The Property Graph Database Model, in: Proc. Alberto Mendelzon International
Workshop on Foundations of Data Management (AMW), volume 2100, CEUR Workshop
Proceedings, 2018.

[14] O. Hartig, Foundations to query labeled property graphs using SPARQL, in: Joint Proceed-
ings of the 1st International Workshop on Semantics for Transport and the 1st International
Workshop on Approaches for Making Data Interoperable, volume 2447, CEUR Workshop
Proceedings, 2019.

[15] I. J. Heath, Unacceptable file operations in a relational data base, in: Proceedings of the
1971 ACM SIGFIDET Workshop on Data Description, Access and Control - SIGFIDET ’71,
ACM Press, San Diego, California, 1971, p. 19. doi:10.1145/1734714.1734717.

[16] H. Knublauch, D. Kontokostas, Shapes constraint language (SHACL), Technical Report,
W3C, 2017. URL: https://www.w3.org/TR/shacl/.

http://dx.doi.org/10.1007/978-3-030-62419-4_29
http://dx.doi.org/10.1145/320434.320440
http://dx.doi.org/10.1145/2187836.2187924
http://dx.doi.org/10.1145/362384.362685
http://dx.doi.org/10.1145/1017466.1017467
http://dx.doi.org/10.1145/1734714.1734717
https://www.w3.org/TR/shacl/

	1 Introduction
	2 Conceptual Models
	3 Mapping Relational Databases to Knowledge Graphs
	4 Conclusion and Future Directions

