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Abstract. One of the main challenges in working with RDF data is its
verbosity, as repeated IRIs and IRI prefixes lead to large files that are
costly to store and process. HDT, a binary RDF format, addresses this
by compressing data while supporting efficient triple pattern evaluation
without decompression. However, its performance is highly dependent on
index alignment with query patterns. In this paper, we introduce COT-
TAS, a storage model that encodes RDF graphs directly into the open-
source Apache Parquet columnar format. COTTAS represents RDF as
a triple table and leverages block range indexes (zone maps) to achieve
high compression ratios and fast query execution over compressed data.
We also provide pycottas, an open-source Python library that enables
compression of RDF data into COTTAS format and supports efficient
querying by translating triple patterns into SQL queries over COTTAS
files. This implementation facilitates the adoption of COTTAS for man-
aging RDF graphs. Experiments on the WDBench and DBpedia bench-
marks show that COTTAS reduces storage requirements by around 50%
with respect to HDT and exhibits competitive triple pattern evaluation,
with less performance volatility across pattern types.
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1 Introduction

Efficient management and consumption of RDF datasets at scale is increas-
ingly critical for Semantic Web applications. Knowledge graphs (KGs) such as
SemOpenAlex [20], Wikidata [45], or the Microsoft Academic KG [19] comprise
billions of triples. As RDF graphs grow larger, there is a pressing demand for stor-
age techniques that minimize space consumption while preserving efficient query
performance. The most popular and widely adopted solution for this problem
is the HDT (Header-Dictionary-Triples) format [21J22], which compresses RDF
triples using a dictionary-based encoding and creates a self-index with adjacency
lists, enabling compact graph storage and querying without full decompression.

Even when HDT has proven highly effective for RDF exchange and querying,
its dictionary-centric approach inherently limits compression rates, especially for


https://orcid.org/0000-0002-3029-6469
https://orcid.org/0000-0002-9834-8376

2 Julian Arenas-Guerrero® and Sebastian Ferrada

datasets with many distinct IRIs and literals. Although secondary indexes can
be built for efficiently evaluating triple patterns that do not match the self-index,
these are costly to compute and further increase file sizes. Since HDT’s intro-
duction 15 years ago, new compression approaches beyond the Semantic Web
community have emerged that could potentially optimize RDF management.

The emergence of Big Data led to the development of column-oriented for-
mats to facilitate data interchange in the Big Data ecosystem. Notable open-
source columnar formats include Parquet, ORC, and CarbonData (find formal
definitions and empirical evaluation of these formats in [48]). These formats
incorporate lightweight compression schemes and can be combined with fast
lossless compression algorithms. They also support vectorized query processing,
projection skipping, and include indexing and filtering techniques for efficient
querying without full decompression. Columnar formats have been used with
RDF for KG processing in the Big Data ecosystem [40J/41]; however, they have
never been studied for RDF compression, interchange, and basic consumption.

In light of these considerations, this work investigates the use of column-
oriented formats to compress and query RDF. Specifically, we use the Parquet
format, a de facto standard [48], and empirically study its space and querying
performance over RDF graphs. We also aim to provide an industry-ready im-
plementation to enable the management of RDF with columnar formats and set
the groundwork for future research in RDF compression in this direction.

With these goals in mind, this paper makes the following contributions:

e We introduce the COTTAS file format for RDF compression, based on
the storage of a triple table in an open-source column-oriented file format,
namely Apache Parquet. COTTAS employs dictionaries and run-length en-
coding as lightweight compression schemes, and uses the Zstandard algo-
rithm [I5] for further compression of data. Querying is optimized utilizing
block range indexes with ordered data and employing Bloom filters [10].

e We present the pycottas Python library for generating and working with
COTTAS files. pycottas can compress RDF data in plain text formats, merge
and subtract COTTAS files, resolve triple patterns, and evaluate SPARQL
queries by serving as an RDFLib backend. pycottas is open-source and avail-
able under the permissive Apache 2.0 License.

e We provide an empirical evaluation, examining the use of encodings, in-
dexes, and filters in COTTAS, and comparing the format to HDT, demon-
strating superior compression efficiency across diverse datasets and compet-
itive triple pattern scan performance. HDT only performs better when the
triple pattern aligns with the self-index, and it has high performance volatil-
ity across pattern types, which is not present in COTTAS.

The remainder of this paper is organized as follows: Section [2] introduces the
COTTAS file format, and Section [3] describes the pycottas library; Section [4]
presents the experimental evaluation of COTTAS, compares it with HDT, and
discusses the results; Section [p] reviews related works; finally, Section [6] wraps up
with some conclusions and outlines directions for future work.
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Fig. 1: RDF triple table (left) and its layout in the COTTAS format (right). Each
column of the triple table is split into row groups of a fixed number of triples
(three in this case). Each row group then lists the columns in column chunks,
which are then divided into pages (in this case, a single page per column chunk)
that are stored contiguously. The zippers indicate compression.

2 The COTTAS Format

The COTTAS file format utilizes Parquet to store RDF graphs as a triple table.
In this section, we first outline the key features of Parquet and then describe
how these features are leveraged for efficient RDF storage.

2.1 Column-Oriented Storage

The following features characterize Parquet’s column-oriented storage model:
Data Layout: Column-oriented storage organizes data by storing values of
each column contiguously, rather than storing entire rows together. The Partition
Attributes Across (PAX) model [2] combines both approaches by dividing tables
into fixed-size row groups, while still organizing data within each group in a
column-oriented manner. In this layout, each row group contains a column chunk
for every attribute, and each chunk is further divided into pages. This structure
enables projection pushdown, allowing queries to read only the required columns
while skipping the others. Figure [l illustrates this layout in Parquet.
Encodings: Parquet supports various lightweight compression encodings,
such as PLAIN, PLAIN_DICTIONARY, DELTA_BINARY_PACKED, and RLE (run—length
encoding). In this work, we focus on the specific encodings most suited for RDF
data, namely RLE_DICTIONARY and DELTA_LENGTH_BYTE_ARRAY.
RLE_DICTIONARY builds a dictionary of distinct values for each column chunk,
storing it in a dedicated dictionary page. The remaining data pages store se-
quences of dictionary keys, compressed using a combination of bit packing, which
finds the minimal number of bits needed for the key values, and run-length en-
coding (RLE), which replaces consecutive repetitions of a key with the key value
and its count. Figure [2) illustrates this organization.
DELTA_LENGTH_BYTE_ARRAY stores all data values contiguously and compresses
their lengths using delta encoding. By encoding only the differences between
consecutive lengths and separating length information from the actual data, this
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Fig. 2: Illustrative example of RLE_DICTIONARY. First, dictionary encoding is ap-
plied to the RDF terms in the column chunk (left). As a result, each RDF term is
assigned an integer key (middle). Then, bit packing and run-length encoding are
applied to the dictionary keys. As a result, runs of dictionary keys are replaced
with pairs consisting of the value and the number of times it repeats.

approach enables compression algorithms (discussed next) to more effectively
identify patterns in both sequences. As an example, the strings :Q1, :Q2, and
: Q3 have equal lengths, allowing their length sequence [3, 3, 3] to be efficiently
represented as an initial value 3 followed by deltas [0, 0].

Compression: Dictionary and data pages can be further compressed with al-
gorithms such as Zstandard [15], Brotli [3], SnappyEl or Lempel-Ziv—Oberhumer
(LZO)H By tuning a compression factor, these algorithms offer a configurable
balance between performance and storage efficiency.

Block Range Indexes: Parquet uses block range indexes (BRIs, also re-
ferred to as zone maps or min-max indexes) to efficiently access data. BRIs record
statistics about the minimum and maximum values within the column chunks
and data pages. These indexes can significantly optimize scans by pruning ir-
relevant data blocks; if a predicate is not within the min-max range, the row
group or data page can be skipped. BRIs are more effective over well-clustered
columns, and their full potential is achieved with an ordered column.

Bloom Filters: Parquet supports Bloom filters [I0] to accelerate query pro-
cessing. For each column chunk, a Bloom filter summarizes the set of distinct
values present in it, allowing efficient probabilistic membership tests. During
query evaluation, Parquet reads Bloom filters to skip entire row groups that
cannot satisfy a given predicate. If the Bloom filter for a column chunk indicates
that a queried value is not present, the entire row group is skipped, reducing
unnecessary /O and improving query performance. Although Bloom filters can
produce false positives, they never produce false negatives, ensuring correctness
while effectively pruning irrelevant data blocks. The false positive rate can be
controlled by adjusting the size of the filter, with larger filters reducing the
likelihood of false positives.

® https://google.github.io/snappy/
5 https://www.oberhumer.com/opensource/l1zo/
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2.2 Compressed RDF Triple Table

A triple table is a ternary relation (s, p, 0) used to store an RDF graph. Each row
in the triple table represents a triple in the graph. This tabular representation is
widely used for RDF data management [I/I8I368]. COTTAS adopts a column-
oriented representation of this triple table, leveraging the Parquet format for effi-
cient compression. Although other relational representations of RDF can be used
with columnar storage (e.g., property tables [4]), they are not schema-oblivious
and would require an arbitrary number of tables. Consequently, multiple COT-
TAS files would be needed, thus hindering RDF publication and exchange.

A triples group corresponds to a Parquet row group containing the column
chunks s, p, and o. Each column chunk is of type BYTE_ARRAY (i.e., strings)
representing RDF terms serialized in Notation3 (N3) format.

In addition to storing RDF as a triple table, COTTAS also supports quad
tables to represent datasets with named graphs. In this case, each row includes
a graph column, resulting in a quaternary relation (s, p, 0, g). The graph column
stores the name of the graph as a string or NULL if the triple belongs to the
default graph. Thus, a valid COTTAS file can represent either a triple or a quad
table, depending on the dataset requirements.

To improve query efficiency over compressed data, COTTAS leverages index-
ing strategies supported by Parquet. In particular, it makes use of BRIs. These
indexes are especially effective when data is clustered, allowing large portions
of data irrelevant to the query to be skipped during evaluation. COTTAS can
then be indexed by sorting the triple table columns. There are six possible in-
dexes: SPO, SOP, PSO, POS, 0SP, and OPS. For instance, the SPO index first sorts
the table by subject, then by predicate, and finally by object. The granularity of
indexes has a direct impact on their effectiveness. Smaller triples groups improve
pruning efficiency by allowing finer-grained filtering but increase metadata over-
head due to the larger number of triples groups and associated dictionary pages.
Similarly, without page-level indexes, pruning cannot be performed at the page
level, limiting the ability to skip irrelevant data.

COTTAS can be hive-partitioned, i.e., the triple table can be split into mul-
tiple files based on a partitioning key. This is particularly useful for vertical
partitioning [I] or for partitioning RDF datasets by named graph. Partitioning
can be combined with BRIs and Bloom filters for enhanced query performance.

In addition to Parquet’s standard file-level metadata, COTTAS files may
include custom metadata, such as the index type, whether the data is stored
as a quad table, and the number of distinct properties. By default, COTTAS
uses the Zstandard compression algorithm [I5] due to its widespread adoption
and effective balance between compression ratio and speed. Nevertheless, the
design remains flexible, allowing the use of alternative columnar formats and
compression algorithms for storing RDF graphs.
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3 The pycottas Library

The pycottas Python library provides a programmatic interface for managing and
querying COTTAS files, following an interaction model similar to that of HDT.
It supports efficient loading, compression, and querying of RDF data stored in
COTTAS format. Built on top of DuckDB [39], pycottas leverages Oxigraph’s
RDF parsers [37] for data ingestion and integrates seamlessly with RDFLib [30]
to ensure compatibility with existing RDF processing workflows. In the following,
we describe its design and core functionalities.

pycottas provides tools for compressing and decompressing RDF data us-
ing the COTTAS format. Compression is performed through chunking, where
subsets of triples are parsed and incrementally loaded into the triple table. The li-
brary supports a variety of input RDF serialization formats, including N-Triples,
N-Quads, Turtle, TriG, N3, and RDF/XML. By default, Zstandard with max-
imum compression level is applied to optimize storage efficiency. Decompres-
sion follows a similar chunk-based process, reading triples from the triple table
and converting them back into plain text formats. To handle large datasets, py-
cottas combines in-memory processing with out-of-core execution, automatically
spilling data to disk when needed. Additionally, it supports merging (cat) and
subtracting (diff) COTTAS files, facilitating dataset management operations.

Triple patterns are evaluated by unfolding to SQL and delegating execution
to DuckDB. The COTTASDocument and COTTASStore classes provide access to
COTTAS files. The former allows native evaluation of triple patterns, while the
latter serves as an RDFLib backend for SPARQL query evaluation. In both cases,
the metadata of COTTAS files is cached in memory to accelerate data access.

The package can be used as a library and also via command line. It supports
compressing and querying RDF datasets (quads). It also allows querying multiple
files at once using glob patterns and partitioned COTTAS.

Impact: The increasing volume of RDF data in large KGs makes efficient
compression essential for ensuring their practical storage, exchange, and query
performance, reinforcing its importance to the Semantic Web community. COT-
TAS significantly outperforms the state-of-the-art compression format HDT in
terms of space and is competitive in performance, as demonstrated in Section [4]
Additionally, pycottas is the first Python library that fully supports compressed
RDF operations. This enhances its potential adoption, as other Python libraries
such as rdflib-hdt [34] can only query HDT but cannot create HDT files.

Availability: The source code of pycottas is maintained on GitHubEI It is
distributed through the Python Package Indexﬂ (PyPI), and the releases are
archived at Zenodo [6]. The package is available under the Apache License 2.0.

Reusability: The documentation of pycottas is hosted on Read the Docsﬂ
The Apache License 2.0 permits future scientific work and its use in industry.

" https://github.com/arenas-guerrero- julian/pycottas
8 https://pypi.org/project/pycottas/
9 https://pycottas.readthedocs.io


https://orcid.org/0000-0002-3029-6469
https://orcid.org/0000-0002-9834-8376
https://github.com/arenas-guerrero-julian/pycottas
https://pypi.org/project/pycottas/
https://pycottas.readthedocs.io

COTTAS: Columnar Triple Table Storage for RDF 7

Design & technical quality: pycottas stands on the shoulders of giants:
it builds on an open-source columnar format (Apache Parquet) and open-source
software (DuckDB, Oxigraph, and RDFLib). It has been tested on massive
datasets with over 1 billion triples (see Section , demonstrating the suitability
of the design of the COTTAS file format and the pycottas implementation.

4 Experimental Evaluation

This section presents an empirical evaluation of the COTTAS format and the
features introduced in Section [2} Our goal is to assess its storage efficiency and
query performance, and to determine whether it constitutes a viable alternative
to existing RDF compression formats. We also aim to provide experimental
insights using a baseline configuration based on default Parquet settings to guide
future research on RDF compression with columnar storage formats.

4.1 Experiment Setup

We run the experiments on an Ubuntu 24.04.2 LTS server with 64 vCPUs Intel
Xeon Gold 5218R CPU @ 2.10GHz, 125GB RAM, and 1TB SSD. The COTTAS
files are generated with pycottas utilizing DuckDB v1.2.1 with PARQUET _VERSION
v2 and Zstandard with compression level 22. Writing page indexes is not sup-
ported in DuckDB (although the system can read them); hence, page indexes
are not considered. For the rest, we use the following default configuration of
DuckDB. The row group size is 122,880 rows. The number of distinct values
(NDV) ratio to apply dictionary encoding is 10%. Bloom filters are generally
created when DuckDB opts for dictionary encoding of a chunk, and its size is
determined by a false positive probability of 1%. Triples in HDT are bitmap-
encoded. For running triple patterns in HDT, we use the Python bindings of the
HDT C++ library in rdflib-hdt. Similarly, pycottas uses the Python bindings of
DuckDB, which is also implemented in C++. Reported times are the average of
three executions. We use a timeout of 1,000 seconds for join queries.

In terms of dataset and queries, we use WDBench [5] and the DBpedia
testbed used in [26)/12]. WDbench is ~156GB with ~1.25 billion triples. DB-
pedia is ~34GB with ~222 million triples. Both benchmarks provide a set of
triple patterns for evaluating query performance. We also use the join patterns
from the DBpedia testbed to analyze join evaluation in COTTAS and HDT.

4.2 Encoding Analysis

We examine the Parquet metadata and summarize the encoding usage in Ta-
ble [[] For each dataset and index, we report the frequency of each encoding
method. Our observations show that the applied sorting strategy influences the
selected encoding. When column values are clustered, RLE_DICTIONARY is used
more frequently, likely because the NDV falls below the 10% threshold required
for this encoding. This clustering effect is less pronounced for the subject column,
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Table 1: Encodings used by COTTAS for the WDBench and DBpedia datasets
with all possible indexes. Values correspond to the number of column chunks
that have been encoded with RLE_DICT or DELTA_LENGTH_BYTE_ARRAY (DLBA).

Dataset Column Encoding SPO SOP PSO POS OSP OPS

RLE.DICT 21 21 36 0 0 0
DLBA 10,200 10,200 10,187 10,221 10,224 10,222

RLE_DICT 8,146 8,153 10,223 10,221 10,079 10,111
DLBA 2,075 2,068 0 0 145 111

RLE_DICT 0 0 36 2,942 2,053 2,055
DLBA 10,221 10,221 10,187 7,279 8,171 8,167

RLE_DICT 98 101 35 0 0 0
DLBA 1,910 1,905 1,972 2,008 2,007 2,007
RLE_DICT 747 740 2,007 2,007 1,681 1,689
DLBA 1,261 1,266 0O 1 326 318
RLE_DICT 0 0 128 162 158 163
DLBA 2,008 2,006 1,879 1,846 1,849 1,844

S

WDBench P

DBpedia P

which typically presents a higher NDV ratio, as subject terms act as identifiers
and show high variability. As a result, subject column chunks are mostly en-
coded using DELTA_LENGTH_BYTE_ARRAY. In contrast, predicate column chunks
are predominantly encoded with RLE_DICTIONARY, given their usually low NDV
ratio, an observation that is also the rationale behind vertical partitioning [IJ.
Predicate column chunks, and object column chunks to a lesser extent, are
more suitable for RLE_DICTIONARY. To prioritize the use of this encoding by
maintaining the 10% threshold for the NDV ratio, COTTAS files should be
indexed by predicate or object. Future research should investigate how aggres-
sively RLE_DICTIONARY should be applied for each index and subject, predicate,
and object column chunks. Given the heavy use of IRIs (especially in subject
and predicate positions), the use of specialized encodings in COTTAS for this
type of string data could be further studied. Potential candidates for this are
dictionary-based order-preserving delta compression [9] and Fast Static Symbol
Table (FSST) [II], which exploits frequently-occurring substrings in data.

4.3 Space Efficiency

We measured the COTTAS file sizes across several RDF graphs, with results
summarized in Table[2] For each graph and index, we compare COTTAS against
HDT and the uncompressed data in N-Triples format. It must be noted that the
OPS index could not be generated for the larger graphs using HDT due to a
software error, which we reported to the developers of the indexing 1ibrarylg|
As shown in the table, COTTAS consistently achieves better compression ratios
than HDT across all index configurations. We report the Average Compression

10 https://github.com/rdfhdt/hdt-java/issues/213
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Table 2: File sizes of RDF graphs in COTTAS, HDT, and (uncompressed)
N-Triples. For COTTAS and HDT, sizes in MB for all possible indexes are
listed. ACR is the average compression ratio of the indexes w.r.t. the N-Triples
file size. Dashes (—) indicate that a certain index could not be created.

Dataset # of triples N-Triples Format SPO SOP PSO POS OSP OPS ACR

WDBench 1,253,567,798 156,233 gg?TAS 17??813483 183,683807 1;544804 152,’265698 15?:156747 5,440 2(1);0
o rmonars o BB, S50 e 4 4 ey D
ORKG [HH 8331305 469 (OTrie 150 149 1o 194 138 134 e
CimpleKG [I3] 136837 209 GOTnag 53 o8 a8 o8 o7 o8 arv
oo s ter Mh BP0y w5 me i iw
rem e  wn Bh 0 0 52 5 % 5000
BSCO (1] BIS600S LS9 GOTTag 1307 101 1989 1080 1048 1604 950
LPWC I 10648236 2553 GOTTas 5300 5300 985 5050 5619 2659 4o

HDT 1,323 1,300 1,498 1,399 1,282 1,258 3.8%

ArCoKG [ 128,571,853 34,570 ooprAS 265.3 268.5 361.9 372.8 325.0 324.9 0.9%

Ratio (ACR), defined as the percentage of the uncompressed file size occupied by
the compressed file. Lower ACR values indicate better compression. COTTAS
achieves an ACR below 10% for all datasets, reaching as low as 0.9% in the
best case. For several datasets, COTTAS indexes are more than three times
smaller than their HDT counterparts. Additionally, no single COTTAS index
configuration consistently outperforms the others in terms of space efficiency,
suggesting that compression effectiveness is dataset-dependent.

For applications constrained by storage space where querying performance is
not prioritary—such as archiving—COTTAS is the preferred alternative. Note
that compression can be further tuned in Parquet, and space-performance trade-
offs can be made in COTTAS. For instance, lowering the compression level of
Zstandard can speed up decompression during file scans, at the cost of a lower
compression ratio. In the extreme case, block compression could be disabled and
rely entirely on lightweight compression encodings for maximizing performance.

4.4 Filters and Indexes

In COTTAS, BRIs are explicitly selected by users, while Bloom filters are cre-
ated automatically based on the characteristics of the data. Table [B|reports the
number of filters generated for WDBench and DBpedia under different index
configurations. We observe that the presence of filters correlates with the choice
of encoding strategies (as shown earlier in Table . In particular, Bloom filters
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Table 3: The use of Bloom filters by COTTAS for the WDBench and DBpedia
datasets with all possible indexes. Values correspond to the number of column
chunks with a Bloom filter. The total number of column chunks for each dataset
is also reported to illustrate the filter availability proportion.

Dataset # col. chunks Column SPO SOP PSO POS OSP OPS

s 21 21 36 0 0 0
WDBench 10,222 p 8,146 8,153 10,222 10,221 10,079 10,111
o 0 0 1,173 2,942 2,053 2,055
s 98 101 35 0 0 0
DBpedia 2,007 P 747 740 2,007 2,007 1,681 1,689
o 0 0 128 162 158 163
Index: SPO Index: SOP Index: PSO
r
£
iy
H
Index: POS Index: OSP Index: OPS
o
E
iy
H
N R N L N I U AN L e )
Triple Pattern Type Triple Pattern Type Triple Pattern Type

Fig.3: Average execution time for different triple pattern types and indexes
over WDBench in the COTTAS and HDT formats. Time is reported in seconds
using log scale. Bars are missing for indexes that failed in their creation.

are typically created when the RLE_DICT encoding is used, since this encoding re-
sults in low cardinality within column chunks, making filters both space-efficient
and effective for pruning data during query evaluation.

More aggressive use of filters in COTTAS could be enabled by increasing the
NDV ratio required to apply dictionary encoding. As COTTAS files are much
smaller than HDT, this can be done while using less space than HDT. Also,
the space difference between COTTAS and HDT allows for the incorporation of
other advanced indexing and filtering structures to accelerate data access.

4.5 Triple Pattern Scan Performance

We evaluate the performance of triple pattern queries using COTTAS across dif-
ferent index configurations and compare the results with HDT. Figures [3] and [
show the average query evaluation times for each type of pattern for WDBench
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Fig.4: Average execution time for different triple pattern types and indexes
over DBpedia in the COTTAS and HDT formats. Time is reported in seconds
using a log scale. Bars are missing for indexes that failed in their creation.

and DBpedia, respectively. For WDBench, COTTAS is more rapid on average
for 21 out of 30 combinations of triple pattern type and index (excluding OPS
as it is not available for HDT). The SP0 and SOP indexes favor HDT, where it
significantly outperforms COTTAS in cases of exact index-pattern alignment. In
contrast, for the PS0 and 0SP orderings, HDT only outperformed COTTAS when
two bound terms aligned with the index. For DBpedia, COTTAS is fastest in
14 out of the 30 combinations. Overall, the results indicate that index selection
has a much stronger impact on HDT’s performance, often resulting in dramatic
variations (orders of magnitude) depending on index-pattern alignment. In con-
trast, COTTAS exhibits more consistent performance across different indexes,
with improvements introduced by indexing, but without the same level of per-
formance volatility observed in HDT.

Although there is no clear winner regarding performance, the distinct be-
haviour of both solutions may determine their suitability for specific applications.
HDT is notably more efficient than COTTAS when the index matches the triple
pattern, but it becomes significantly slower than COTTAS when it does not.
This makes COTTAS preferable for time-constrained applications, regardless of
the triple pattern type. Conversely, HDT might be preferable in applications
that require optimizing specific patterns. As previously mentioned, COTTAS
files use far less space than HDT, and thus, additional indexes and filters could
be stored to catch up to HDT.

4.6 Join Performance

Finally, we evaluate and compare the join performance in COTTAS and HDT
formats using various join patterns provided by the DBpedia benchmark [12].
The testbed defines two query sets—small and large—based on the size of their
result sets, and categorizes joins between two triple patterns as follows:
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Fig.5: Average query execution time for the different types of small joins and
indexes over DBpedia in the COTTAS and HDT formats. Time is reported in
seconds using log scale. Bars are missing for indexes that failed in their creation.

e No unbound predicates:
— No unbound subject or object: A (s p1 7z . 7z ps 0).
— One unbound subject or object: B (?s p; 72 . 7x py 0).
— Two unbound subject or object: C (?s p1 7z . 7x ps 70).
e One unbound predicate:
— No unbound subject or object: D (s p; 7z . 7z ?py 0).
— One unbound subject or object:
o Eq (?sp1 ?x . %z p2 0).
o Eo (7s 7p; 7x . 7x pa 0).
— Two unbound subject or object: F (?s p1 ?x . 7z 7py ?0).
e Two unbound predicates:
— No unbound subject or object: G (s ?py 7z . 7z ?ps 0).
— Omne unbound subject or object: H (?s ?py 7z . 7x 7py 0).
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Fig. 6: Average execution time for the different type of big joins and indexes over
the DBpedia dataset in the COTTAS and HDT formats. Time is reported in
seconds using log scale. Bars are missing for indexes that failed in their creation.

Additionally, each join type has variants based on join positions:

e Subject-subject: SS (7 p; o1 .

7T pa 02)-

e Subject-object: SO (s1 p1 7z . 7x pa 03).
e Object-object: OO (s1 p1 7z . sg pa 7x).

Figures[5and [ show the results for the small and big query sets, respectively.
The average query execution time for each join pattern is reported, excluding
queries that resulted in timeouts or errors for COTTAS or HDT. In this ex-
periment, join execution is delegated to RDFLib for both COTTAS and HDT.
However, Parquet is optimized for vectorized query execution, which RDFLib
does not exploit, resulting in more cases where HDT achieved lower execution
times than COTTAS. The performance of join execution in COTTAS could be
improved by pushing down its execution to DuckDB via SQL unfolding and
leveraging vectorized execution.
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5 Related Work

In this section, we review related works on RDF compression and discuss their
relevance to our approach. Section[5.I]focuses on RDF compression formats, with
special emphasis on HDT and its successors, while Section [5.2| covers approaches
based on columnar storage formats.

5.1 RDF Compression

HDT [21] is the state-of-the-art format for compressing and querying RDF
graphs. It comprises three components: (i) the header stores file metadata, in-
cluding dataset statistics, publication, and format information; (ii) the dictio-
nary maps RDF terms to IDs; and (iii) the triples consists of tuples of term IDs.
There are notable similarities between HDT and COTTAS. Both formats record
file-level metadata, and COTTAS additionally records row group- and page-level
metadata. COTTAS also maintains a dictionary of RDF terms when a column
chunk is encoded with RLE_DICTIONARY. However, while the dictionary in HDT
is global to the entire file, COTTAS uses a separate dictionary for each column
chunk. The HDT dictionary is divided into four sections: subjects, predicates,
objects, and terms occurring as both subject and object. Given that COTTAS
dictionaries apply to a single column chunk, they also encode terms in a specific
position. HDT offers three encodings for the triples: plain, compact, and bitmap.
Bitmap is the most efficient, and implies sorting by subject, predicate, and ob-
ject, and creating nested predicate and object adjacency lists, similar to the
Turtle RDF serialization. Sequences of triple IDs for predicates and objects are
stored alongside bitmaps that determine the shape of the graph. This allows for
efficient resolution of triple patterns with a bound subject or with a bound sub-
ject and predicate. Other triple patterns can also be efficiently evaluated using
different orderings for the adjacency lists, similar to BRIs indexes in COTTAS.
HDT also supports external indexes [33129] to efficiently evaluate all possible
triple patterns. However, creating these indexes is costly in terms of space and
time, and HDT files are already larger than their counterparts in COTTAS.

HDTQ [22] extends HDT to support RDF datasets by adding a section in
the dictionary for storing named graphs and incorporating the quad information
component to mark the presence of triples within each graph of the RDF dataset.
RDF datasets are straightforwardly supported in COTTAS using a quad table.

HDTCat [I7] efficiently merges two HDT files by exploiting their initial or-
dering (assuming they use the same triple ordering). HDTCat has been further
extended to merge an arbitrary number of files and to remove triples, enabling
updates [47]. These operations are supported in COTTAS by pushing down com-
putation to SQL. Notably, multiple COTTAS files can be simultaneously queried
by using glob patterns without the need to merge them.

Other RDF compression techniques, such as K2Triples [25], Permuted Trie
Index [38], and RDFCSA [12], focus on the structural part of the RDF graph
(indeed, they serve as a replacement of the HDT triples component). However,
their implementations are research prototypes and not industry-ready. A major
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advantage of COTTAS is that it is built on top of a popular columnar format
and can be implemented in other programming languages beyond Python with
minimal effort by reusing existing Parquet implementations.

5.2 Columnar Compression

Column-oriented compressed formats emerged with the rise of Big Data nearly
two decades ago. The most popular formats today are Parquet, ORC, and Car-
bonData, all of which have a PAX-based [2] layout. Recent studies [4832] have
empirically evaluated Parquet and ORC, laying the groundwork for future, more
efficient columnar formats. COTTAS can directly benefit from new columnar
formats (e.g., BtrBlocks [3I] and Vortex [44]), as well as new lightweight com-
pression schemes (e.g., FSST [11]), and indexing and filtering techniques (e.g.,
column imprints [42] and SuRF [49)]).

Parquet was previously used for the scalable and distributed processing of
RDF with Big Data frameworks. Examples include Sempala [40], which uses
Impala as a processing engine, and S2RDF [41], which uses Spark. However,
these works focus on distributed RDF processing, whereas our work emphasizes
the use of Parquet for RDF compression, exchange, and querying.

6 Conclusion and Future Directions

In this paper, we explored RDF compression using column-oriented storage and
introduced COTTAS, a file format that encodes RDF as a triple table in Parquet.
COTTAS leverages Parquet’s lightweight compression schemes along with the
Zstandard algorithm to achieve high space efficiency. It also exploits block range
indexes and Bloom filters to enable fast triple pattern evaluation over compressed
RDF graphs. Additionally, we presented pycottas, an open-source Python library
for creating and managing COTTAS files. It supports the compression of RDF
in plain-text serializations and enables efficient querying by translating triple
patterns into SQL queries over COTTAS files. This implementation facilitates
seamless integration of COTTAS in existing RDF data processing ecosystems
and lowers the barrier to adoption.

Experiments using the WDBench and DBpedia benchmarks show that COT-
TAS reduces storage requirements by around 50% with respect to HDT, and gen-
erally outperforms HDT in triple pattern evaluation, except when these align
with the index. COTTAS presents a more stable behavior than HDT, whose
performance differs by orders of magnitude for different types of triple patterns.

Future research should analyze COTTAS using other column-oriented for-
mats, and more lightweight compression encodings, indexes, and filters for en-
hanced compression and querying of RDF graphs. Although COTTAS does not
have a large memory footprint, ways to optimize its memory consumption can
be further researched. Investigating the pushdown of joins into SQL and lever-
aging vectorization capabilities for efficient join execution by unfolding them to
SQL are also important areas for future work. In addition, it is crucial to study
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how to extend COTTAS to support the upcoming RDF 1.2 standard [28§], for
which recent advances have been made for HDT [27]. We also plan to integrate
pycottas with the KG construction system Morph-KGC [7] to directly generate
compressed, ready-for-consumption RDF graphs from heterogeneous data.
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