Graph Querying or Similarity Search? Both!

1,2,5 1,3

Vicente Calisto!®, Sebastian Ferrada , Gonzalo Navarro , Juan L.
Reutter’"¥®, Juan Pablo Sanchez!*®, and Domagoj Vrgoc!+*

! Millennium Institute for Foundational Research on Data (IMFD), Chile
2 IDIA, Universidad de Chile, Santiago, Chile
3 DCC, Universidad de Chile, Santiago, Chile
4 Pontificia Universidad Catoélica de Chile, Santiago, Chile
® National Center for Artificial Intelligence Research (CENIA), Chile
vicente.calisto@imfd.cl, {sebastian.ferrada,gnavarro}@uchile.cl,
jreutter@ing.puc.cl, {jpsanchez, vrdomagoj}@uc.cl

Abstract. Extracting information from knowledge graphs is a signif-
icant algorithmic challenge, especially when dealing with multimodal
knowledge graphs that integrate images, text, and/or videos. While cur-
rent graph management systems can efficiently evaluate graph queries,
they struggle with multimedia data. To address this, systems rely on
metadata, such as vector embeddings, for similarity search. While both
graph pattern evaluation and similarity search work well independently,
real-world applications often require their combination to retrieve media
based on both the graph structure and specific similarity criteria.

This paper studies the problem of querying multimodal knowledge graphs
by combining graph patterns with similarity constraints. We formalize
this as an extraction task where some nodes in the graph pattern are fil-
tered by similarity, and then the results must be ordered by a similarity
score. While a straightforward approach is to evaluate the graph pattern
first and then sort by similarity, we introduce alternative algorithms that
evaluate both tasks jointly, leveraging indices for efficient similarity com-
putation. Our implementation employs an approximate version of these
indices, and our experiments show that graph database systems can ef-
ficiently integrate semantic similarity constraints into their queries.

1 Introduction

Similarity search plays a crucial role in Information Retrieval, Machine Learn-
ing, and Retrieval-Augmented Generation (RAG). It involves finding objects in
a dataset that are similar to a given query, which is essential for document re-
trieval [7], recommendation systems [I], and pattern recognition [41I] tasks. In
RAG, similarity search enables the retrieval of knowledge relevant to the query to
enhance generative models, leading to more accurate and contextually informed
outputs [32]. Further, with the rise of vector representations of text, images, and
other media, the quest for efficient similarity search has become increasingly
relevant for querying large-scale, high-dimensional data [5526/T3I8/22].

https://orcid.org/0009-0004-9669-9158
https://orcid.org/0000-0002-9834-8376
https://orcid.org/0000-0002-2286-741X
https://orcid.org/0000-0002-2186-0312
https://orcid.org/0009-0007-2086-2117
https://orcid.org/0000-0001-5854-2652

2 IMFED et al.

SELECT 7tower 7img ?dist WHERE {

7tower wdt:P31/wdt:P279% wd:Q12518; wdt:P17 Pcountry; wdt:P18 7img. Pcountry wdt:P361 wd:Q18.
wd:Q151356 :hasVector ?7vector.

7img proc:hnswlterator ("vectorIndex" ?vector ?dist)

} LIMIT 10

Fig. 1: Query to get the S. American towers most similar to the Berlin TV Tower.

Knowledge Graphs (KGs) are structured representations of information where
entities are connected through relationships. KGs facilitate complex queries, rea-
soning, and inferences [30]. KGs are used in semantic search [56], recommenda-
tion systems [24], and natural language processing [46], etc. In this work, we
focus on Multimodal Knowledge Graphs (MKGs), where the base data remains
in RDF, and other data modalities (such as images, text, or videos) are incorpo-
rated into the graph via precomputed vector embeddings. These embeddings are
treated as additional attributes associated with RDF entities, allowing for more
nuanced and expressive queries, where users may wish to retrieve subgraphs
that satisfy structural constraints and exhibit similarity in vector spaces. Con-
sequently, supporting similarity-aware querying in MKGs requires novel query
semantics and evaluation strategies that go beyond traditional graph pattern
matching or vector retrieval in isolation. Examples of MKGs include TIVA-
KG [53], Richpedia [52], and IMGpedia [20].

In this paper, we investigate the problem of how to efficiently evaluate a graph
pattern query @ over an MKG G while also imposing a similarity-based restric-
tion on the results. Specifically, the query results Q(G) must be sorted by the
distance of the vectors associated with the bindings of a fixed variable in @) and
an input vector or with the vector associated with a given entity a € G. We are
mostly interested in the case when the k best answers are wanted. The integration
of graph pattern matching with similarity search introduces new computational
challenges, including efficiently combining the two tasks and leveraging exist-
ing indices for optimization, presenting new opportunities for improving query
evaluation strategies in MKGs. Furthermore, such techniques have broader ap-
plications, such as improving KG-based RAG [39] by incorporating both graph
structure and similarity constraints into the retrieval process.

For instance, consider combining Wikidata [48], a large KG with structured
information about various domains, and IMGpedia [20], an MKG that links
Wikimedia Commons images and their corresponding embeddings to Wikidata
entities. Suppose we want to retrieve images of communication towers in South
America that are visually similar to an image of the Berlin TV Tower. To achieve
this, we first construct a graph pattern query @ that identifies entities classified
as “tower” (wd:Q12518) and located in South America (wd:Q18). Next, we apply
a similarity condition to the images of these towers, requiring them to be among
the 10-nearest neighbors of the Berlin TV Tower’s image in Wikimedia Com-
mons (wd:Q151356) based on their embeddings from IMGpedia. This approach
allows us to retrieve 254 images of towers that match the graph pattern and,
from them, the 10 most similar to the Berlin TV Tower. Fig. [I] illustrates how
we express this example query using our own SPARQL extension with similar-

Graph Querying or Similarity Search? Both! 3

Index 0

7image

Fig. 2: Results of evaluating the query from Fig. |1| over Wikidata.

SELECT ?pact (COUNT(?twt) AS ?7nb) (AVG(?dist) AS ?mean) WHERE {
7member telar:hasAccount 7account ;

telar:politicalGroupConvention ?pact. 7pact 7nb 7mean

7twt telar:postedBy 7account ; telar:createdAt 7date . Frente Amplio 95 0.50
FILTER(?date>="2022-02-17T02:51:20" Partido Comunistal 41 0.51
&& ?date<="2022-02-17T14:51:20") Vamos por Chile 27 0.64
telar:twp_1494142390663360512 :hasVector ?vector UDI 11 0.68

7twt proc:hsnwliterator ("tweets_sbert" ?vector ?7dist)
} GROUP BY 7pact

Fig. 3: Query searching for polarization on opinions about regionalization.

ity indices and vectors. In our solution, RDF triplestores are extended with a
special vector literal with a datatype that appears in the object position. The
similarity part of the query is expressed using the proc:hnswlterator clause,
which must receive as input the vector embedding of the image of the Berlin
TV Tower (wd:Q151356), which is achieved through the predicate :hasVector.
This clause mandates that similar items are to be extracted through an HNSW
vector index [33] Fig. [2 contains the final 10 images of the answer.

Our setting also allows for similarity searches w.r.t. an input vector instead of
a node in the KG. This problem appears continuously in the context of RAG. For
example, consider a user searching for political discourses in Congress, asking for
a summary of interventions on climate change. Using a RAG-based approach, we
can store the vector embedding of each discourse in Congress at indexing time
and use the same embedding model to embed the query “summary of discussions
about climate change” at query time. Then, we retrieve the 10 most similar
interventions and passed them to an LLM for summarization. Now, suppose the
user asks for a “summary of discussions about climate change by congresspeople
over 60.” Here, a standard RAG approach might not work as intended since it
could retrieve interventions from younger members of Congress. By leveraging
a KG, we could first filter members of Congress over 60, ensuring only their
interventions are considered. Then, we can retrieve the 10 most similar discourses
from this filtered set, refining the search before passing the results to the LLM.

As a final example, we use TelarKG [2], an MKG of the Chilean constitutional
process enriched with S-BERT [44] embeddings for convention members’ social
media posts and interventions. We query it to retrieve the members’ opinions on
regionalization, based on a seed neutral tweet, and compute their average sim-
ilarity by political pact. The query combines graph patterns (linking members,
posts, and pacts) with vector similarity over text. Figure [3|shows the query and
select results, revealing the expected ideological polarization of opinions.

https://telarkg.imfd.cl/#/node/gpc_Frente_Amplio
https://telarkg.imfd.cl/#/node/gpc_Partido_Comunista__ChD_
https://telarkg.imfd.cl/#/node/gpc_Vamos_por_Chile__otros_
https://telarkg.imfd.cl/#/node/gpc_UDI

4 IMFED et al.

In this paper, we design algorithms to evaluate these queries jointly. We
compare our algorithms to a query-and-select baseline, which first evaluates the
graph pattern and then selects the results with the shortest distances. Notably,
our algorithms offer theoretical guarantees in a combined setting: they are worst-
case optimal in the number of results and range-optimal in distance computa-
tions. We also provide a complete implementation of our approach on top of
an existing open-source SPARQL engine [35]. Experiments show that our algo-
rithms significantly accelerate MKG query answering with broad applicability.

Before detailing our algorithms (Sections [5H{6]), we cover related work (Sec-
tion 7 preliminaries (Section , and the problem statement (Section . Im-
plementation and evaluation are in Sections and conclusions in Section [0]

2 Related Work

The problem of retrieving objects based on nearest neighbors has recently re-
ceived a lot of attention in the context of Vector Databases, which are systems
built specifically for obtaining the nearest neighbors of (embeddings of) objects.
For more information on the latest advances in the area, we refer to the survey
by Pan et al. [38]. Notably, some of these systems allow for filtered similar-
ity search, wherein users can input certain filter conditions together with the
input vector, and the system retrieves only the nearest neighbors that satisfy
the filter conditions [23IT940/5TI25]. Further, ChromaDB [I5], a popular vector
database, has specified a formal language to carry out these operations: here
documents have JSON metadata, and filter conditions refer to the presence of
certain values in this metadata. For example, one writes {gender: female} to
ask only for documents where the gender metadata corresponds to female. We
note that our problem is more general, as filter conditions can be expressed as
triple patterns over KGs, but complex graph queries cannot be transferred to
filter conditions unless precomputed at indexing time, which is not compati-
ble with the idea that systems should support evaluating any possible pattern
with similarity. Moreover, Vector Databases normally use a version of one of our
algorithms (Iterate-and-Query, see Algorithm [3]) to evaluate filtered similarity
search, and hence studying other options for solving filtered similarity search
should also be of interest to Vector Databases implementing this feature.

We are aware of only two systems that support answering graph queries
based on similarity conditions of an arbitrary vector, which is the focus of this
paper: MillenniumDB [49/50], the database system we use as the framework to
experiment with, and pgvector [42], a Vector Database built as a PostgreSQL
component that allows answering a subset of SQL queries based on similarity
constraints. Using the formalization of the problem that we provide in this paper,
we see that these systems evaluate queries using the baseline that we present in
Section [Interestingly, the need for more efficient algorithms to answer queries
based on similarity conditions has already been stated by contributors of pgvec-
tor [I7]. We expect our work to guide future contributions to these systems and
pave the path for more systems supporting similarity search in MKGs.

Graph Querying or Similarity Search? Both! 5

Lastly, Arroyuelo et al. study query answering where patterns feature simi-
larity conditions between variables [3]. This work relies on precomputed indices
for processing similarity conditions and hence does not support querying for ar-
bitrary input vectors. Likewise, previous work on MKGs (e.g., [53152120]) does
not efficiently support queries with arbitrary vectors not present in the KG.

3 Preliminaries

RDF and SPARQL. RDF [I6] is the standard graph data model for the Semantic
Web. RDF terms can be either IRIs (Z), literal values (£), or blank nodes (B).
An RDF triple is a tuple (s,p,0) € ZB x Z x ZBL. An RDF Graph is a finite set
of RDF triples. The fundamental querying primitives in SPARQL [27] are Basic
Graph Patterns (BGPs). Let V be a universe of variables disjoint from ZBL. A
BGP Q is a set of triple patterns (z,y,2) € ZV x IV x ZLV. The output Q(G)
of the BGP when evaluated in a graph G is a set of solution mappings p, where
p:VUZ — T is an assignment such that for each triple pattern (z,y, z) € Q, it
holds that (u(x), u(y), u(z)) € G, where p(x) ==z for all x € ZU L. We denote
as vars(Q) the set of variables appearing in the triple patterns of Q.

Worst-case-optimal joins. The AGM bound [5] establishes the maximum out-
put size of a join query. This bound can also be applied to graph patterns by
regarding each triple pattern as a relation formed by the triples matching its
constants [31]. Formally, the AGM bound of a query @ over a graph database G,
denoted as Q*(G), or just Q* if G is understood from context, is the maximum
size Q(G") could have over any database instance G’ with at most the number of
edges in G. An algorithm to process queries is worst-case optimal (wco) if it has a
running time in O(Q*), where O ignores polylogs and data-independent factors.
In this paper, we use Leapfrog TrieJoin (LTJ), which was shown to be worst-case
optimal for any join query, including graph patterns, by Veldhuizen [47].

Similarity search. Similarity search over a set of objects D from a universe U
relies on a similarity score, the higher the score, the more similar the objects
are. Similarity scores are often measured as distances. Given a distance function
0:UXU— RS‘ , smaller distances indicate greater similarity.

A common similarity task is the search for the k nearest neighbors in D of a
query object ¢ € U, which are k elements of D that are closest to ¢ w.r.t. distance
0. Formally, the problem is to find the set k-NN(q) such that ¢ ¢ k-NN(q),
|k-NN(q)| = k, and Yz € k-NN(q),Vy € D\ k-NN(q),y # ¢, d(¢,z) < (g, y).

A naive search algorithm computes the distance from ¢ to all x € D; comput-
ing n=|D| distances. To reduce the cost, objects in D can be indezed to prune
objects that are too far from ¢ without computing their distance to ¢. In metric
spaces, the triangle inequality d(z,y) < 0(x,q) + d(q,y) is used to prune dis-
tance computations, so that if we compute d(g,) and the index knows a bound
0(x,y) > d, we know that 6(¢q,y) > d — 6(¢q,) and might avoid computing it.
Some relaxations of the triangle inequality can be used for non-metric spaces.

6 IMFED et al.

Several indices exist for metric spaces [45)55], including the particular case
where the space is R? and the distance function is an L, metric, where a famous
example is the R-tree [26], which works well for low values of d; its analogous for
general metric spaces is the M-tree [I3]. Most indices are designed to solve range
queries, which, given ¢ € U and r > 0, return all € D such that §(q,z) < r.
k-NN queries can be solved on those indices in various ways, for example, with
a sequence of range searches with increasing values of r until £ or more elements
are retrieved. There are also solutions that backtrack on the index, looking for
the k elements closest to ¢q. We call those solutions KNN indices.

A well-known technique [2829] that works on hierarchical indices (like the
R-tree) keeps a priority queue with the maximal nodes of the hierarchy yet to
be traversed, sorted by a lower bound on the distance from ¢ to any object
in the node. The algorithm iterates, extracting the first node from the queue
and reinserting its children in the queue; leaves of the index insert objects in
the queue, computing their distance to ¢q. Objects extracted from the queue are
reported at once; it can be seen that the first k reported objects are k-NN(q).

An important property of this technique is that it is range-optimal. It finds
k-NN(q) with the same number of distance computations the index would use to
compute a range search that retrieves those k objects. Further, this method is
incremental: it successively retrieves the next closest element to ¢, so we obtain
k-NN(q) by stopping after k objects are retrieved, but we can also use it as an
iterator that yields the next closest element to ¢. We call this operation nextp(q),
and call INN those indices supporting this incremental search.

On high-dimensional spaces (where the histogram of ¢ is very concentrated),
indices may fail to avoid performing many distance computations. This is called
the curse of dimensionality. A way to measure the intrinsic dimensionality of
a dataset in a metric space is p?/(20%), where p and o2 are the mean and
variance of the histogram of ¢ [II], which is ©(d) on random vectors in the
(R4, L,,) metric space. An extreme example is the distance §(z,z) = 0 for all
x and 0(z,y) = 1 + €(z,y) for all y # x, where €(x,y) < 1 is a random value;
it is impossible to save any distance computation in this space. In general, an
intrinsic dimension over 20 is considered to be intractable.

In those high-dimensional spaces, finding an approzimation to k-NN(gq) may
be acceptable because modeling similarity with distance functions is already an
approximation to the desired answers. A good approximation may offer much
lower search costs at the expense of a small difference between the correct and
the returned set k-NN(q). There exist various algorithms to compute k-NN(q)
approximately on L, metrics, with various sorts of guarantees [4J54/43)], as well as
with no approximation guarantees but performing well in practice [22I8]. Some
techniques for general metric spaces offer probabilistic approximation guaran-
tees [14y12], while others offer no guarantees but perform well in practice [10].

Cost model. In range or nearest-neighbor searches, the number of evaluations of
the distance § dominates all the other CPU costs; thus, it is customary to count
only the number of evaluations of §. This is not the case in our problem: solving
graph patterns involves a significant CPU cost, which can be superlinear on the

Graph Querying or Similarity Search? Both! 7

database size, whereas the number of evaluations of § is at most linear. For this
reason, we describe the time complexities of algorithms as a pair (c, €), where e
is the number of evaluations of ¢ and ¢ includes all other CPU costs.

4 Top-k Graph Similarity Search

Let us now formally introduce the problem we study in the paper. We assume
our MKG G includes a vector store 7, which assigns vector embeddings to some
(or all) nodes in G. For a node b in G, 7(b) represents its vector embedding.
We assume a distance function ¢ to measure the similarity among the vectors
in 7. Additionally, 7 is indexed to support incremental search for the nearest
neighbors of a given vector ¢, which we denote as next.(¢).

With these definitions, we want to allow users to add a similarity clause to
graph patterns. Recall that Q(G) denotes the evaluation of a graph pattern @
over an MKG G. Let z € vars(Q) be a fixed variable. We call (Q,x) a graph
similarity pattern. Note that we can write the tuples in Q(G) as (a,b), where
b is the element bound to x and a are the elements bound to the variables in
vars(Q) \ {z}. Now, we select the tuples from Q(G) that have the lowest value
for 6(t,7(b)): the distance from an input vector ¢ to 7(b). Particularly, we want
the k-best answers from Q(G) (handling ties in any way). The problem Top-k
Graph Similarity Search (or k-GSS) consists of finding such k best answers to
an arbitrary graph similarity pattern w.r.t. their distance to an arbitrary vector:

Topr-k GRAPH SIMILARITY SEARCH (k-GSS)
Given: Graph G, distance function J, vector store 7.
Input: Graph pattern (Q,x) with similarity, vector ¢ and integer k.
Output: k best answers (a,b) € Q(G), ordered by d(t, 7(b))

Revisiting the query from Fig. [I] the input graph pattern is stated in a WHERE
clause. The last triple pattern sets ?img as the variable that is subject to sim-
ilarity, and the vector bound to ?vector is given as the embedding of node
wd:Q151356. ?dist is the fresh variable to which the distance from the vector of
7img and ?vector is bound. As discussed in Section[7} the proc:hsnwlterator
function supports both user-provided vectors (type:tensorFloat constants)
and vectors retrieved from the MKG (e.g., the embedding of a given node).

5 A first baseline: Query-and-select

A naive algorithm for £-GSS is to (1) evaluate Q over G, (2) compute §(t, 7(b))
for each (a,b) € Q(G), and (3) select those with the k shortest distances.

This procedure is outlined in Algorithm [} The computation of d can be done
with any classic linear-time algorithm for computing quantiles. If there are ties
in the distances, the k tuples are selected as follows: in a first pass over Ans,

8 IMFED et al.

Algorithm 1 Baseline k-GSS via query-and-select

Require: Graph G, distance 4, vector store 7, Query (Q,), vector ¢ and integer k
Ensure: Top k answers (a,b) € Q(G), ordered by d(t, (b))

Ans + Q(G) > using some wco algorithm

for (a,b) in Ans do

associate with (@, b) the value dist = 6(¢,7(b)).

end for

d < the kth smallest dist value in Ans

OAns < k tuples (a,b) € Ans with dist < d

Return OAns

we report the tuples (@, b) with dist < d. Say we reported k' < k tuples in this
pass; then, in a second pass, we report the first k — k' tuples with dist = dEI
This algorithm can be pipelined using a max-priority queue P with the k
tuples (a,b) with the smallest dist values seen so far. For each new tuple (a, b)
found by the wco algorithm, we compute dist=4(t, 7(b)) and, if dist < max(P),
we extract the maximum of P (if |P|=k) and insert (a, b). Despite the O(log k)
extra CPU time per tuple in Q(G), this version likely performs better in practice.
Overall, this query-and-select algorithm takes time O(Q*) to compute Q(G),
then it performs |Q(G)| distance computations, and finally it spends O(|Q(G)|) C
0(Q*) (or O(|Q(G)|log k) € O(Q*) if pipelined) time to compute d and find the
k smallest distances. Its time complexity, using our model, is then (O(Q*), |Q(G)|).
An advantage of this algorithm is its simplicity, not needing any KNN in-
dex. However, it must find all the results in Q(G), which may be prohibitive
for queries with many results. Further, it requires computing the distance of
the vector ¢ to every query result. Notably, its time complexity is essentially
independent of k, unlike most KNN indices that perform better on smaller k.
Throughout the paper, we assume the use of a wco join algorithm for the
graph query evaluation to analyze the theoretical cost of our methods. We ac-
knowledge that such algorithms are not currently adopted in many existing graph
database systems. Nevertheless, we emphasize that our algorithms are compat-
ible with other join strategies as well; while doing so may forgo the theoretical
guarantees, the usefulness of the algorithms is preserved.
Next, we explore algorithms that compute k-GSS faster, especially for small
values of k. We also consider combining the wco algorithm with approximate
KNN indices to further speed up queries at the cost of slight result degradation.

6 Combining wco and KNN search

In this section, we provide alternatives to the query-and-select algorithm. These
alternatives combine a wco algorithm for the graph pattern with INN indices that
support incremental KNN searches from ¢ in our vector store 7 via the iterator

5 Even if all the distances to ¢ are distinct, there can be many tuples (a,b) for the
same value of b, and they will all appear in Ans.

Graph Querying or Similarity Search? Both! 9

Algorithm 2 k-GSS via query-and-iterate

Require: Graph G, distance d and indexed vector store 7, next-()
Require: Query (Q,), vector t and integer k
Ensure: Top k answers (@,b) € Q(G), ordered by 4(t, 7(b))

Ans <+ Q(G) > using some wco algorithm
H «+ dictionary of tuples (a,b) € Ans with b acting as key
OAns <

for each next element b = nezt,(t) do
if b is a key in H then
Add to OAns every tuple of the form (a,b) € Ans
if |OAns| > k then
Return OAns capped to the first k tuples
end if
end if
end for
Return OAns > if less than k results

next(t) described in the Preliminaries. Both searches are integrated into a single
algorithm. For the analysis, we assume the INN algorithm is range-optimal.

6.1 Query-and-iterate

The first algorithm we explore uses an INN to reduce the |Q(G)| distance eval-
uations computed by query-and-select. It is most useful when the number of
answers to the query, |Q(G)|, is large. As before, we first compute Q(G), but in-
stead of probing each result, we repeatedly use nezt, (t) to find the next neighbor
of t. Each such neighbor is looked up in Q(G) until k of them are found. Lookup
can be implemented, for example, with a hash table for tuples (@,b) € Q(G),
with b acting as the hash key. This method is described in Algorithm

Let d be the distance to the k-th nearest neighbor of ¢ that occurs in Q(G), we
define R(d)={b | d(t,7(b)) < d} as the set of elements in the vector store up to
the farthest element to ¢t we answer. A range-optimal INN computes the required
distances (for the specific index) to find R(d); we call this number D(d) < |Q(G)].
Let us assume its CPU cost is within O(D(d)) € O(Q*), which is mostly the
case. This includes the hash table search timeEI Then, we immediately obtain:

Proposition 1. the complezity of Algorithm@ is (0(Q*), D(d))

This is a considerable reduction in the number of distance evaluations w.r.t. the
query-and-select algorithm.

6.2 Iterate-and-query

Our second proposal aims to reduce CPU time by working the other way around:
we begin by iterating over next, (t) to retrieve the next-nearest neighbor of ¢. For

" To obtain worst-case search times, we can use instead binary search on a sorted
array, whose construction and searches are still within O(|Q(G)|) C O(Q™).

10 IMFD et al.

Algorithm 3 Approximate k-GSS via Iterate-and-query

Require: Graph G, distance d and indexed vector store 7, next-()
Require: Query (Q,), vector t and integer k
Ensure: Top k answers (@,b) € Q(G), ordered by 4(t, 7(b))
OAns + ()
for each next element b = nezt,(t) do
Ans(b) + Qz=(G) > using some wco algorithm
Add Ans(b) to OAns
if |OAns| > k then
Return OAns capped to the first k tuples
end if
end for
Return OAns > if less than k results

each such neighbor b, we run a restricted query Q,—p, where the variable z is
replaced with the constant b. This method is detailed in Algorithm [3] It is most
useful when the query @ is complex and produces many results.

Let us define Qer(a)(G) € Q(G) as the set of answers in Q(G) where z is
restricted to be in R(d). We show:

Proposition 2. The time complexity of Algom'thm@ is <O(QZER(d))7D(d)>

Proof. The worst-case size of the output satisfies Q7 R(a) < Q*. A wco algorithm
that handles the query Q' = Q <1 U, where U is a unary relation with the
attribute z and the rows R(d), works in time O(Q;GR(d)). We do not proceed
in this way but instead invoke the wco algorithm with Q.- for each b € R(d).
By Friedgut’s inequality [36] it holds that: Qrer@) = EbeR(d) Q% _,. The time
complexity of this algorithm is then (O(Z:eR(d))’ D(d)).

Although worst-case time complexities always favor iterate-and-query over
query-and-iterate, actual wco algorithms may require more work to compute
Q+=p(G) for many values of b than to compute the whole Q(G). Which way
works better in practice depends on this relation. A tradeoff can be obtained by
evaluating in batches: for each batch B = by, ... b, of consecutive near neighbors
returned by nezt,(t), we run the query Qe p, by treating B as a unary relation
associated with variable x € vars(Q)). The worst-case analysis stays as for the
non-batched version, except that we may extract up to R(d) + ¢ elements from
the INN (in exchange for packing the candidates into fewer queries).

7 Implementation

Algorithm [T] can be implemented on top of any existing graph database system
that has a vector store by defining a new operator allowing the computation
of distances to a fixed vector. In contrast, implementing Algorithms [2] and
requires the coordination of two components: a graph database management

Graph Querying or Similarity Search? Both! 11

system with support for vectors and an INN. Practical applications such as
RAG impose considerable strain on the query throughput, so we resort to ANN
indices, which are faster (though less precise) and widely available in popular
vector databases. We use MillenniumDB [35] for both components, a multimodal
graph database supporting RDF/SPARQL which extends RDF with a vector
datatype allowing to store vectors as literals. In MillenniumDB we store vectors
as literals in triples, using a special datatype to denote it is a vector. Regarding
queries, the engine uses Leapfrog Trie-Join (LTJ) [47] as the wco algorithm to
compute the answers of graph patterns, and HNSW [33] to implement the ANN
index. Naturally, these two components work independently, and thus, another
implementation may use other approaches for query processing or for vector
retrieval. All storage and retrieval of data is achieved through the standard disk-
buffer architecture, meaning that the database is fully persistent.
Query-and-Select. Implementation of Algorithm[I]in MillenniumDB uses LTJ.
As results are produced, we compute the distance to the specified vector ¢ and
keep a priority queue of size k, storing the most similar results seen so far. After
evaluating @, the queue contains the final output as described in Section [5}
Query-and-Iterate. For Algorithm[2] the dictionary H used to probe for query
tuples is built using extendable hashing [2I] (which is buffered to disk as needed).
LTJ populates this table as it produces results. We also build an iterator on
top of MillenniumDB’s ANN index by extending the classical top-k querying for
HNSW [33] with the ability to iterate over all the vectors in decreasing order of
similarity to a fixed vector. As we iterate through the elements most similar to
our query vector ¢, we probe H until the & most similar results are found.
Iterate-and-Query. To implement Algorithm [3] we modify the variable or-
dering of Leapfrog Trie-Join so that it starts with variable x (which is the one
subject to similarity search). When instantiating this variable, we iterate over all
possible assignments for it using the ANN index instead of using the database
indices in MillenniumDB. Our implementation explicitly alters the variable order-
ing of LTJ, which is known to be important for performance [37]. As we assume
R(d) to be much smaller than the number of nodes in the graph, it should be
the case that starting with variable x leads to a better performance.
Query Language. MillenniumDB fully supports SPARQL. We designed and
implemented a SPARQL extension in MillenniumDB to add similarity search
clauses. Our extension offers support for the following four new capabilities:

1. Vector datatype. As already mentioned, we implement a vector datatype that
can be used in RDF triples. A sample syntactic specification of a vector of
length 3 is "[1,2,3]"~"type:tensorFloat.

2. Distance functions. We implement special functions to calculate similarity
between vectors using common distance functions. For example, the function
call fn:manhattanDistance(?vector, "[1,2,3,4]"""type:tensorFloat)
computes the Manhattan distance between the vector stored in ?vector and
the vector [1,2,3,4]. We currently support several standard distance func-
tions, such as the Manhattan and Euclidean metrics.

12 IMFD et al.

3. HNSW iterators. To support iterative algorithms, we also extend the HNSW
index with the ability to return all the vectors in the vector store sorted by
(approximate) distance from a fixed vector. For this, we implement the pro-
cedure: proc:hnswIterator("index" vector 7distance). This procedure
returns graph nodes in decreasing order of distance to vector in the HNSW
index called index and binds this distance to ?distance. In contrast to tra-
ditional HNSW iterators [33], which only return top-k nodes, to support our
algorithms, we need to potentially iterate over all the nodes in the graph.

We now illustrate how to use these capabilities. Let us say we wish to retrieve
100 people most similar to Geoffrey Hinton, who also won a Turing Award. The
following query expresses this using the HNSW iterator from item 3 above. Note
that the nodes returned by proc:hnswIterator are bound to variable ?person.

SELECT 7person ?dist WHERE {

?person :won :Turing Award . :Geoffrey_Hinton :hasVector ?vector.
?person proc:hnswlterator("indexName" vector ?dist)
} LIMIT 100

Our language also supports the Query-and-Select algorithm, and also the
classical HNSW method to retrieve the top-k most similar nodes. For space
reasons we do not show the corresponding SPARQL queries, but they will be
made avaliable as part of the documentation of our code.

8 Experimental Results

In this section, we see how our algorithms perform against the Query-and-Select
baseline. Regarding query time, we expect to confirm the hypothesis that Algo-
rithms 2| and |3| are better suited than the baseline for computing top-k queries
for small k. Furthermore, we also expect our variants to thrive on queries with
high selectivity, especially when running over limited time constraints. We also
believe it is important to study the selectivity thresholds that mandate when to
use one algorithm over the others, as this has a direct impact on the development
of fully-fledged query engines looking for the best plan to evaluate each query.

In our implementation, we focus on speed by relying on ANN indices. Hence,
as we cannot guarantee the retrieval of all the nearest neighbors of a vector, an-
other natural question is how our alternatives compare to the baseline regarding
the quality of the answers retrieved by the approximate methods. In summary,
in this section, we use our experiments to answer the following questions:

Q1: How much faster can Algorithms [2] and [3] be for solving k-GSS in practice?

Q2: For increasing values of k, when does the baseline become a better algorithm?
Regarding the number of answers, what is the selectivity range where our
alternatives perform better?

Q3: How does the ANN version of Query-and-Iterate and Iterate-and-Query com-
pare to the baseline in terms of the quality of the answers?

Graph Querying or Similarity Search? Both! 13

8.1 Data

For our experiments, we used the combined RDF graphs of Wikidata and IMG-
pedia. IMGpedia is an MKG that provides embeddings for 15 million images
from Wikimedia Commons and also links each image to its related entities in
Wikidata [20]. We use a truthy dump of Wikidata containing 617,065,092 triples.

Regarding queries, we mine them from a Wikidata query log [349]. We select
all queries with nonempty results that involve an image (e.g., by using predicate
wdt:P18) that has an available embedding in IMGpedia. We extract only the
BGPs in these queries. Each of these real-world BGPs is transformed into a
similarity pattern by selecting a random variable in the BGP that we know
(from Wikidata’s ontology) must be mapped to an image, selecting a random
node from the answer of this BGP, and constructing a similarity clause for this
variable and the vector of this node. We produced 200 queries.

In terms of similarity, we sampled a million random pairs of vectors from
the HOG vectors in IMGpedia (192 dimensions). We obtain an estimated mean
Manhattan (L) distance of 42.6, and a standard deviation of 8.1. This gives us
an intrinsic dimensionality of 13.8, which is at the higher end of the tractable
range, further justifying the choice of ANNs for our implementation.

8.2 Setup

We use the implementation described in Section [7| (see [35]). The experiments
were run on a commodity server (Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz
and 118GB of RAM, Devuan Chimaera 4.0). MillenniumDB used 48GB of RAM
for buffering and single-threaded execution. OS caches were cleared between
the algorithm versions, but remained hot within the runs. This means that each
batch of queries is run in succession for a specific algorithm and similarity restric-
tion, but caches are cleaned when switching versions. Queries have a timeout of 1
minute; only results found within that time are reported. The HNSW index [33]
was built with m = 48 edges and efConstruction= 256.

8.3 Query Evaluation Time

Fig. [shows the average execution time over all queries in our benchmark.
As expected, the smaller the value of k, the better our algorithms perform. On
average, Query-and-Iterate shows only a slight advantage for top-1 queries, while
Iterate-and-Query shows an advantage for up to top-50 queries. This already
gives a direct answer to Q1, as Iterate-and-Query seems an obvious alternative
to use in cases where k < 50. However, the running time of our algorithms
depends heavily on the selectivity of these queries, so we look into this.

From our analysis on selectivity, an important shortcoming of the Query-
and-Select baseline is that it requires computing the distances between all the
|Q(G)| answers of the pattern and the input vector, whereas both Query-and-
Iterate and Iterate-and-Query require an optimal (when using INNs) number
of computations, which we call R(d). Hence, the larger the number of answers,

14 IMFD et al.

CZ BASELINE X3 QAI X=X 1AQ

Avg. Time (s)

Fig.4: Running time of Query-and-Select (baseline), Query-and-Iterate (QAI)
and Iterate-and-Query (IAQ). Average overall queries in the benchmark.

the more unnecessary computations are made by the baseline. Further, we also
expect Iterate-and-Query to use far less processing time (compared to the base-
line) when R(d) is smaller than |Q(G)|: this is because we are specifically starting
LTJ with the variable subject to similarity. This is a good idea if R(d) is small
compared to the selectivity of other variables, but it can be a poor choice if other
variables provide much stricter selectivity. This fact does not show up in the wco
bounds, and hence, it was not predicted by the theory.

To verify these claims experimentally, we partition the 200 queries in the
benchmark into deciles w.r.t. the number of answers of the underlying graph
pattern in each query and compute the proportion of time taken by Iterate-
and-Query and Query-and-Select, as well as Query-and-Iterate and the baseline.
Results in Table [1| show a striking difference in the running time of algorithms
depending on the selectivity of the graph patterns. For queries with low selectiv-
ity (i.e., D8-D10), Iterate-and-Query can be up to 50x faster than the baseline.
On the other hand, this is reversed in the higher-selectivity deciles, with fewer
answers (< 4,000). In these cases, it is conceivable that the database is better
off computing these 4,000 answers and then ordering them by similarity than
traversing the index. This analysis also explains why Query-and-Iterate exhibits
the worst performance on average: in D8-D10, where these algorithms shine
the most, Query-and-Iterate still has the overhead of processing hundreds of
thousands of tuples into a hash join, which slows down the process. With this
experiment, we answer Q2: for the settings in our server, the selectivity threshold
of queries for using Iterate-and-Query is over 248,000 expected answers.

One important observation from Table [1] is that query selectivity in our
dataset is highly skewed, with 7 deciles having fewer than 4000 answers. Re-
markably, even though 70% of queries are extremely selective, the running time
of Tterate-and-Query (IAQ) remains competitive up to & = 25. This highlights
the inefficiency of Query-and-Select under low selectivity. Assuming an oracle
that predicts the decile of each query, combining Query-and-Select and TAQ
would reduce the average running time for k = 25 to around 2.5 seconds, a 66%
improvement over IAQ alone, currently the best option (see Figure [4]).

On average, the baseline takes 0.1s for queries in D1-D7 and up to 130
minutes for queries in D8D10. TAQ is slightly slower on smaller queries (0.8s
on D1-D7), but remains fast as size grows (8s on D8-D10).

Graph Querying or Similarity Search? Both! 15

Table 1: Proportion of median time taken by Query-and-Select (baseline), Query-
and-Iterate (QAI), and Iterate-and-Query (IAQ), grouped over deciles of 20
queries, sorted by number of answers. MNA is the median number of answers
to the queries in each decile.

Time: IAQ /baseline Time: QAI/baseline

[D.] MNA |k =1] k =5[k = 10[k = 25] k = 50|k = 1] k = 5[k = 10]k = 25] k = 50
1 459(16.31{132.38|302.82|861.22|1438.98|19.22|115.97|254.32|761.39(1219.95
2 793| 6.84| 23.19| 37.82| 58.12| 130.14| 7.13| 20.33| 33.45| 49.12| 106.28
3 976 5.90| 17.48| 35.34|107.01| 173.68| 6.78| 12.22| 15.16| 36.86| 71.53
4 1,303| 9.05| 19.55| 25.51| 80.80| 216.00| 9.79| 18.62| 22.85| 70.08| 178.57
5 1,606|26.62| 47.63| 84.57|174.20| 248.96|24.05| 38.22| 68.28|141.47| 195.50
6

7

8

9

2,09545.99| 64.58| 80.71]189.45| 333.63|42.45| 55.39| 69.84|164.54| 293.63
3,186|17.10| 44.34| 79.40|145.64| 291.32(16.98| 39.58| 73.97(124.71| 242.92
248,004| 0.79| 1.08| 1.67| 2.76 4.59| 1.01) 1.48] 2.70| 3.38 3.21
2,672,812| 0.02| 0.02| 0.02| 0.02| 0.02|0.91| 0.91] 0.91] 0.87 1.08
10{7,625,570(0.03| 0.03| 0.03| 0.03] 0.03| 1.20{ 1.17| 1.21] 1.19 1.19

8.4 Quality of the Approximated Methods

In this section, we answer Q3 by measuring the distance between the answers
retrieved by our (ANN-based) implementation of Algorithms [2[and [3| and the
ground truth baseline. We remark that these results mostly depend on the choice
of ANN index: the more precise the index, the better the quality of the answers.
Nevertheless, the results we obtain for the HNSW index in MillenniumDB reveal a
trend that should be common to any implementation that uses similar indices [0].

To evaluate the quality of the answers of our algorithms, we measure the per-
centage of correct k-NN objects found relative to the baseline. In this context,
this percentage reflects both precision and recall. Fig. [5] presents the precision
distribution per algorithm and per value of k. QAI has a mean average precision
(MAP) of 27.5%, while TAQ reaches 28.5%. As shown in the figure, precision
increases with larger values of k, which is expected since, for smaller k, a single
wrong answer has a larger impact. The figure also shows a high variance in pre-
cision, averaging 31%. These results reflect the inherent tradeoff between query
evaluation time and precision [6]. We leave improving the precision metrics for
future work, possibly with parameter tuning or by incorporating more sophisti-
cated ANN indices. Moreover, for cases where precision is most important, one
can always resort to deterministic non-approximated INN indices.

9 Concluding Remarks

In this paper, we formalize and study efficient algorithms for the k-GSS problem.
Our theoretical analysis makes a case for Iterate-and-Query as the algorithm of
choice, especially when k is small and the number of answers to patterns is large.
We confirm this fact through an experiment using IMGpedia [20], an MKG that

16 IMFD et al.

QAI IAQ

Precision
Precision
. . .

N s o0 N s R
L T L Y S

Fig. 5: Precision of Query-and-Iterate (QAI) and Iterate-and-Query (IAQ).

incorporates image embeddings into Wikidata. We believe our paper will pave
the way for implementing k-GSS in graph databases, especially in those that
currently feature vector stores, such as Neo4j or Amazon Neptune.

Improved query algorithms. So far, we have considered plug-and-play combina-
tions between LTJ and an INN algorithm, but more involved arrangements may
yield improved results. For example, we can enhance the LTJ algorithm so that
the similarity condition is incorporated at the time of variable binding. This can
be done in the style of Query-and-Select (i.e., generate all the values of a variable
x that survive Leapfrog’s intersection, sort them by distance to ¢, and then bind
the values = b in that order), Query-and-Iterate (generate the values for x as
before, then use the INN index to produce the neighbors of ¢ sorted by distance,
and bind the values z = b that are found in the intersection), or Iterate-and-
Query (generate the consecutive neighbors with the INN, and check each one to
see if it survives the intersection of LTJ).

More similarity conditions. Both algorithms and the query language can be
extended to support more similarity conditions. Assume we have a graph G, a
distance 9§, and a vector store 7. For query patterns, we can now fix several of
its variables, which are to be compared with several individual vectors. To see
how answers are sorted, suppose we have such a pattern query (Q,x1,...,Z,),
vectors tq,...t,, and an aggregation function F' : R™ — R. Then each answer
(@,b1,...,b,) is ordered according to the value of F'(by,...,b,). For the query-
and-select baseline, we compute F' at the time answers are retrieved and keep the
set of best-k answers seen so far in a priority queue. For the other algorithms, we
replace the next, (t) iterator with a top-1 variant of the Threshold Algorithm [18]
using next(t) to separately explore candidates in each dimension of F'.

Supplemental Material Statement: All sources and scripts available at [35].

Acknowledgments. This work was funded by ANID — Millennium Science
Initiative Program — Code ICN17_002. S. Ferrada was supported by Fondecyt
Grant 11251322; by CENIA FB210017, Basal ANID; and by the Vicerrectoria
de Investigacion y Desarrollo (VID) of U. de Chile, project code UI-016/24.
G. Navarro was supported by Fondecyt Grant 1-230755. J. L. Reutter and D.
Vrgo¢ were supported by Fondecyt Grant 1221799. D. Vrgo¢ was also supported
by Fondecyt Grant 1240346.

Graph Querying or Similarity Search? Both! 17

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Amer, A.A., Abdalla, H.I., Nguyen, L.: Enhancing recommendation systems perfor-
mance using highly-effective similarity measures. Knowledge-Based Systems 217,
106842 (Apr 2021). https://doi.org/10.1016/j.knosys.2021.106842

. Angles, R., Calisto, V., Diaz, J., Ferrada, S., Hogan, A., Pinto, A., Reutter, J.,

Rojas, C., Rosales-Méndez, H., Sarmiento, H., Toussaint, E., Vrgo¢, D.: TelarKG:
A Knowledge Graph of Chile’s Constitutional Process. In: Proceedings of the 7th
Joint Workshop on Graph Data Management Experiences & Systems (GRADES)
and Network Data Analytics (NDA). pp. 1-5. ACM, Santiago AA Chile (Jun 2024).
https://doi.org/10.1145/3661304.3661899

Arroyuelo, D., Bustos, B., Gémez-Brandon, A., Hogan, A., Navarro, G., Reutter,
J.: Worst-case-optimal similarity joins on graph databases. Proceedings of the ACM
on Management of Data 2(1), 1-26 (2024)

Arya, S., Mount, D., Netanyahu, N., Silverman, R., Wu, A.: An optimal algorithm
for approximate nearest neighbor searching in fixed dimension. In: Proc. 5th ACM-
SIAM Symposium on Discrete Algorithms (SODA’94). pp. 573-583 (1994)
Atserias, A., Grohe, M., Marx, D.: Size bounds and query plans for relational joins.
SIAM Journal on Computing 42(4), 1737-1767 (2013)

Aumiiller, M., Bernhardsson, E., Faithfull, A.: ANN-Benchmarks: A benchmarking
tool for approximate nearest neighbor algorithms. Information Systems 87, 101374
(Jan 2020). https://doi.org/10.1016/j.1is.2019.02.006

Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern information retrieval, vol. 463.
ACM press New York (1999)

Bawa, M., Condie, T., Ganesan, P.: LSH forest: Self-tuning indexes for similarity
search. In: Proc. 14th International Conference on World Wide Web (WWW).
p. 651. ACM Press (2005). https://doi.org/10.1145/1060745.1060840
Bonifati, A., Martens, W., Timm, T.: Navigating the maze of wikidata query logs.
In: The World Wide Web Conference. pp. 127-138 (2019)

Chévez, E., Figueroa, K., Navarro, G.: Effective proximity retrieval by ordering
permutations. IEEE Transactions on Pattern Analysis and Machine Intelligence
30(9), 1647-1658 (2008)

Chéavez, E., Navarro, G., Baeza-Yates, R., Marroquin, J.L.: Searching in metric
spaces. ACM Computing Surveys 33(3), 273-321 (2001)

Ciaccia, P., Patella, M.: PAC nearest neighbor queries: Approximate and controlled
search in high-dimensional and metric spaces. In: Proc. 16th International Confer-
ence on Data Engineering (ICDE). pp. 244-255 (2000)

Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity
search in metric spaces. In: Proc. 23rd International Conference on Very Large Data
Bases (VLDB). pp. 426-435 (1997)

Clarkson, K.L.: Nearest neighbor queries in metric spaces. Discrete Computational
Geometry 22(1), 63-93 (1999)

Core, C.: Chroma - the open-source embedding database. https://github.com/
chroma- core/chromal (2024)

Cyganiak, R., Wood, D., Lanthaler, M., Klyne, G., Carroll, J.J., McBride, B.: RDF
1.1 Concepts and Abstract Syntax. W3C Recommendation, W3C (Feb 2014)
Discussion on the pgvector project: https://github.com/pgvector/pgvector/
issues/259

Duong, Q.H., Liao, B., Fournier-Viger, P., Dam, T.L.: An efficient algorithm for
mining the top-k high utility itemsets, using novel threshold raising and pruning
strategies. Knowledge-Based Systems 104, 106-122 (2016)

https://doi.org/10.1016/j.knosys.2021.106842
https://doi.org/10.1016/j.knosys.2021.106842
https://doi.org/10.1145/3661304.3661899
https://doi.org/10.1145/3661304.3661899
https://doi.org/10.1016/j.is.2019.02.006
https://doi.org/10.1016/j.is.2019.02.006
https://doi.org/10.1145/1060745.1060840
https://doi.org/10.1145/1060745.1060840
https://github.com/chroma-core/chroma
https://github.com/chroma-core/chroma
https://github.com/pgvector/pgvector/issues/259
https://github.com/pgvector/pgvector/issues/259

18

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

IMFED et al.

Engels, J., Landrum, B., Yu, S., Dhulipala, L., Shun, J.: Approximate nearest
neighbor search with window filters. arXiv preprint arXiv:2402.00943 (2024)
Ferrada, S., Bustos, B., Hogan, A.: IMGpedia: A Linked Dataset with Content-
Based Analysis of Wikimedia Images. In: The Semantic Web — ISWC 2017, vol.
10588, pp. 84-93. Springer International Publishing, Cham (2017). https://doi.
org/10.1007/978-3-319-68204-4_8

Garcia-Molina, H., Ullman, J., Widom, J.: Database systems: the complete book.
Pearson Education India (2008)

Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-
ing. In: VLDB’99, Proceedings of 25th International Conference on Very Large
Data Bases, September 7-10, 1999, Edinburgh, Scotland, UK. pp. 518-529. Mor-
gan Kaufmann (1999), http://www.vldb.org/conf/1999/P49.pdf

Gollapudi, S., Karia, N.; Sivashankar, V., Krishnaswamy, R., Begwani, N., Raz, S.,
Lin, Y., Zhang, Y., Mahapatro, N., Srinivasan, P., et al.: Filtered-diskann: Graph
algorithms for approximate nearest neighbor search with filters. In: Proceedings of
the ACM Web Conference 2023. pp. 3406-3416 (2023)

Guo, Q., Zhuang, F., Qin, C., Zhu, H., Xie, X., Xiong, H., He, Q.: A Survey on
Knowledge Graph-Based Recommender Systems. IEEE Transactions on Knowl-
edge and Data Engineering 34(8), 3549-3568 (Aug 2022). https://doi.org/10.
1109/TKDE. 2020.3028705

Guo, R., Luan, X., Xiang, L., Yan, X., Yi, X., Luo, J., Cheng, Q., Xu, W., Luo, J.,
Liu, F., et al.: Manu: a cloud native vector database management system. arXiv
preprint arXiv:2206.13843 (2022)

Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Pro-
ceedings of the 1984 ACM SIGMOD International Conference on Management of
Data - SIGMOD ’84. p. 47. ACM Press, Boston, Massachusetts (1984). https:
//doi.org/10.1145/602259.602266

Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 Query Language (Mar
2013), https://www.w3.org/TR/sparqlll-query

Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. ACM Trans-
actions on Database Systems 24(2), 265-318 (1999)

Hjaltason, G.R., Samet, H.: Incremental similarity search in multimedia databases.
Tech. Rep. CS-TR~4199, University of Maryland, Computer Science Department
(2000)

Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., de Melo, G., Gutiérrez,
C., Kirrane, S., Labra Gayo, J.E., Navigli, R., Neumaier, S., Ngonga Ngomo,
A.C., Polleres, A., Rashid, S.M., Rula, A., Schmelzeisen, L., Sequeda, J.F.,
Staab, S., Zimmermann, A.: Knowledge Graphs. No. 22 in Synthesis Lectures
on Data, Semantics, and Knowledge, Springer (2021). https://doi.org/10.2200/
S01125ED1V01Y202109DSK022, https://kgbook.org/

Hogan, A., Riveros, C., Rojas, C., Soto, A.: A worst-case optimal join algorithm
for SPARQL. In: Proc. 18th International Semantic Web Conference (ISWC). pp.
258-275 (2019)

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Kiittler, H.,
Lewis, M., Yih, W.t., Rocktéschel, T., Riedel, S., Kiela, D.: Retrieval-augmented
generation for knowledge-intensive nlp tasks. In: Proc. 34th International Con-
ference on Neural Information Processing Systems. Curran Associates Inc., Red
Hook, NY, USA (2020)

Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neigh-
bor search using hierarchical navigable small world graphs. IEEE transactions on
pattern analysis and machine intelligence 42(4), 824-836 (2018)

https://doi.org/10.1007/978-3-319-68204-4_8
https://doi.org/10.1007/978-3-319-68204-4_8
https://doi.org/10.1007/978-3-319-68204-4_8
https://doi.org/10.1007/978-3-319-68204-4_8
http://www.vldb.org/conf/1999/P49.pdf
https://doi.org/10.1109/TKDE.2020.3028705
https://doi.org/10.1109/TKDE.2020.3028705
https://doi.org/10.1109/TKDE.2020.3028705
https://doi.org/10.1109/TKDE.2020.3028705
https://doi.org/10.1145/602259.602266
https://doi.org/10.1145/602259.602266
https://doi.org/10.1145/602259.602266
https://doi.org/10.1145/602259.602266
https://www.w3.org/TR/sparql11-query
https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://kgbook.org/

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Graph Querying or Similarity Search? Both! 19

Malyshev, S., Krotzsch, M., Gonzalez, L., Gonsior, J., Bielefeldt, A.: Getting the
most out of wikidata: Semantic technology usage in wikipedia’s knowledge graph.
In: The Semantic Web-ISWC 2018: 17th International Semantic Web Conference,
Monterey, CA, USA, October 8-12, 2018, Proceedings, Part II 17. pp. 376-394.
Springer (2018)

Millennium Institute for Foundational Research on Data: MillenniumDB. The
link to the repository can be found at: https://anonymous.4open.science/r/
WCO-SimilaritySearch-2025

Ngo, H.Q.: Worst-case optimal join algorithms: Techniques, results, and open prob-
lems. In: Proc. 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems (PODS). pp. 111-124 (2018)

Nguyen, D., Aref, M., Bravenboer, M., Kollias, G., Ngo, H.Q., Ré¢, C., Rudra,
A.: Join processing for graph patterns: An old dog with new tricks. In: Proc. 3rd
International Workshop on Graph Data Management Experiences and Systems
(GRADES). pp. 2:1-2:8 (2015)

Pan, J.J., Wang, J., Li, G.: Survey of vector database management systems. The
VLDB Journal 33(5), 1591-1615 (2024)

Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J., Wu, X.: Unifying Large Language
Models and Knowledge Graphs: A Roadmap. IEEE Transactions on Knowledge
and Data Engineering 36(7), 3580-3599 (Jul 2024)

Paraschakis, D., Ros, R., Borg, M., Runeson, P.: Fuserank (demo): Filtered vector
search in multimodal structured data. In: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. pp. 404-408. Springer (2024)
Pelillo, M., Hancock, E.R. (eds.): Similarity-Based Pattern Recognition, Lecture
Notes in Computer Science, vol. 7005. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-24471-1

PostgreSQL Global Development Group: pgvector - open-source vector similarity
search for postgres. https://github.com/pgvector/pgvector (2024)
Prokhorenkova, L., Shekhovtsov, A.: Graph-based nearest neighbor search: From
practice to theory. In: Proc. 37th International Conference on Machine Learning,
(ICML). Proceedings of Machine Learning Research, vol. 119, pp. 7803-7813 (2020)
Reimers, N., Gurevych, I.: Sentence-BERT: Sentence Embeddings using Siamese
BERT-Networks (2019). https://doi.org/10.48550/ARXIV.1908.10084

Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan
Kaufmann (2006)

Schneider, P., Schopf, T., Vladika, J., Galkin, M., Simperl, E., Matthes, F.: A
decade of knowledge graphs in natural language processing: A survey. In: Proc.
2nd Conference of the Asia-Pacific Chapter of the Association for Computational
Linguistics and the 12th International Joint Conference on Natural Language Pro-
cessing. vol. 1, pp. 601-614 (2022)

Veldhuizen, T.L.: Triejoin: A simple, worst-case optimal join algorithm. In: Proc.
17th International Conference on Database Theory (ICDT). pp. 96-106 (2014)
Vrandecié, D., Krotzsch, M.: Wikidata: A free collaborative knowledgebase. Com-
munications of the ACM 57(10), 78-85 (Sep 2014)

Vrgoé, D., Rojas, C., Angles, R., Arenas, M., Arroyuelo, D., Buil-Aranda, C.,
Hogan, A., Navarro, G., Riveros, C., Romero, J.: MillenniumDB: An Open-Source
Graph Database System. Data Intelligence 5(3), 560-610 (Aug 2023). https:
//doi.org/10.1162/dint_a_00229, https://direct.mit.edu/dint/article/5/
3/560/117375/MillenniumDB- An-Open-Source-Graph-Database-System

https://anonymous.4open.science/r/WCO-SimilaritySearch-2025
https://anonymous.4open.science/r/WCO-SimilaritySearch-2025
https://doi.org/10.1007/978-3-642-24471-1
https://doi.org/10.1007/978-3-642-24471-1
https://github.com/pgvector/pgvector
https://doi.org/10.48550/ARXIV.1908.10084
https://doi.org/10.48550/ARXIV.1908.10084
https://doi.org/10.1162/dint_a_00229
https://doi.org/10.1162/dint_a_00229
https://doi.org/10.1162/dint_a_00229
https://doi.org/10.1162/dint_a_00229
https://direct.mit.edu/dint/article/5/3/560/117375/MillenniumDB-An-Open-Source-Graph-Database-System
https://direct.mit.edu/dint/article/5/3/560/117375/MillenniumDB-An-Open-Source-Graph-Database-System

20

50.

51.

52.

53.

54.

55.

56.

IMFED et al.

Vrgoé, D., Rojas, C., Angles, R., Arenas, M., Calisto, V., Farfas, B., Ferrada, S.,
Heuer, T, Hogan, A., Navarro, G., Pinto, A., Reutter, J., Rosales, H., Toussiant, E.:
Millenniumdb: A multi-modal, multi-model graph database. In: Companion of the
2024 International Conference on Management of Data. p. 496-499. SIGMOD ’24,
Association for Computing Machinery, New York, NY, USA (2024). https://doi.
org/10.1145/3626246.3654757, https://doi.org/10.1145/3626246.3654757
Wang, J., Yi, X., Guo, R., Jin, H., Xu, P., Li, S., Wang, X., Guo, X., Li, C., Xu, X.,
et al.: Milvus: A purpose-built vector data management system. In: Proceedings of
the 2021 International Conference on Management of Data. pp. 2614-2627 (2021)
Wang, M., Wang, H., Qi, G., Zheng, Q.: Richpedia: A Large-Scale, Comprehensive
Multi-Modal Knowledge Graph. Big Data Research 22, article 100159 (Dec 2020)
Wang, X., Meng, B., Chen, H., Meng, Y., Lv, K., Zhu, W.: TIVA-KG: A Multi-
modal Knowledge Graph with Text, Image, Video and Audio. In: Proc. 31st ACM
International Conference on Multimedia. pp. 2391-2399 (2023)

Yianilos, P.: Locally lifting the curse of dimensionality for nearest neighbor search.
In: Proc. 11th ACM-SIAM Symposium on Discrete Algorithms (SODA). pp. 361—
370 (2000)

Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search - The Metric Space
Approach, Advances in Database Systems, vol. 32. Kluwer (2006)

Zheng, W., Zou, L., Peng, W., Yan, X., Song, S., Zhao, D.: Semantic SPARQL sim-
ilarity search over RDF knowledge graphs. Proceedings of the VLDB Endowment
9(11), 840-851 (Jul 2016). https://doi.org/10.14778/2983200.2983201

https://doi.org/10.1145/3626246.3654757
https://doi.org/10.1145/3626246.3654757
https://doi.org/10.1145/3626246.3654757
https://doi.org/10.1145/3626246.3654757
https://doi.org/10.1145/3626246.3654757
https://doi.org/10.14778/2983200.2983201
https://doi.org/10.14778/2983200.2983201

	Graph Querying or Similarity Search? Both!

